kanishka's picture
End of training
583c323 verified
metadata
tags:
  - generated_from_trainer
datasets:
  - kanishka/counterfactual_babylm_aann_high_variability_numeral
metrics:
  - accuracy
model-index:
  - name: >-
      smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/counterfactual_babylm_aann_high_variability_numeral
          type: kanishka/counterfactual_babylm_aann_high_variability_numeral
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.41021489963935376

smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3

This model was trained from scratch on the kanishka/counterfactual_babylm_aann_high_variability_numeral dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4236
  • Accuracy: 0.4102

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5932 1.0 18596 3.7701 0.3588
3.3833 2.0 37192 3.5597 0.3819
3.2597 3.0 55788 3.4648 0.3927
3.1741 4.0 74384 3.4191 0.3977
3.1213 5.0 92980 3.3967 0.4009
3.0783 6.0 111576 3.3773 0.4050
3.0456 7.0 130172 3.3826 0.4055
3.0126 8.0 148768 3.3547 0.4077
2.9843 9.0 167364 3.3614 0.4083
2.9592 10.0 185960 3.3779 0.4085
2.9367 11.0 204556 3.3604 0.4099
2.9145 12.0 223152 3.3759 0.4097
2.8924 13.0 241748 3.3856 0.4096
2.8757 14.0 260344 3.3844 0.4105
2.8545 15.0 278940 3.3832 0.4107
2.8339 16.0 297536 3.4079 0.4098
2.8157 17.0 316132 3.3884 0.4104
2.7966 18.0 334728 3.4081 0.4105
2.7807 19.0 353324 3.4181 0.4104
2.7595 20.0 371920 3.4236 0.4102

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.19.1