metadata
tags:
- generated_from_trainer
datasets:
- kanishka/counterfactual_babylm_aann_high_variability_numeral
metrics:
- accuracy
model-index:
- name: >-
smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/counterfactual_babylm_aann_high_variability_numeral
type: kanishka/counterfactual_babylm_aann_high_variability_numeral
metrics:
- name: Accuracy
type: accuracy
value: 0.41021489963935376
smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3
This model was trained from scratch on the kanishka/counterfactual_babylm_aann_high_variability_numeral dataset. It achieves the following results on the evaluation set:
- Loss: 3.4236
- Accuracy: 0.4102
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.5932 | 1.0 | 18596 | 3.7701 | 0.3588 |
3.3833 | 2.0 | 37192 | 3.5597 | 0.3819 |
3.2597 | 3.0 | 55788 | 3.4648 | 0.3927 |
3.1741 | 4.0 | 74384 | 3.4191 | 0.3977 |
3.1213 | 5.0 | 92980 | 3.3967 | 0.4009 |
3.0783 | 6.0 | 111576 | 3.3773 | 0.4050 |
3.0456 | 7.0 | 130172 | 3.3826 | 0.4055 |
3.0126 | 8.0 | 148768 | 3.3547 | 0.4077 |
2.9843 | 9.0 | 167364 | 3.3614 | 0.4083 |
2.9592 | 10.0 | 185960 | 3.3779 | 0.4085 |
2.9367 | 11.0 | 204556 | 3.3604 | 0.4099 |
2.9145 | 12.0 | 223152 | 3.3759 | 0.4097 |
2.8924 | 13.0 | 241748 | 3.3856 | 0.4096 |
2.8757 | 14.0 | 260344 | 3.3844 | 0.4105 |
2.8545 | 15.0 | 278940 | 3.3832 | 0.4107 |
2.8339 | 16.0 | 297536 | 3.4079 | 0.4098 |
2.8157 | 17.0 | 316132 | 3.3884 | 0.4104 |
2.7966 | 18.0 | 334728 | 3.4081 | 0.4105 |
2.7807 | 19.0 | 353324 | 3.4181 | 0.4104 |
2.7595 | 20.0 | 371920 | 3.4236 | 0.4102 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.19.1