--- tags: - generated_from_trainer datasets: - kanishka/counterfactual_babylm_aann_high_variability_numeral metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/counterfactual_babylm_aann_high_variability_numeral type: kanishka/counterfactual_babylm_aann_high_variability_numeral metrics: - name: Accuracy type: accuracy value: 0.41021489963935376 --- # smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3 This model was trained from scratch on the kanishka/counterfactual_babylm_aann_high_variability_numeral dataset. It achieves the following results on the evaluation set: - Loss: 3.4236 - Accuracy: 0.4102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.5932 | 1.0 | 18596 | 3.7701 | 0.3588 | | 3.3833 | 2.0 | 37192 | 3.5597 | 0.3819 | | 3.2597 | 3.0 | 55788 | 3.4648 | 0.3927 | | 3.1741 | 4.0 | 74384 | 3.4191 | 0.3977 | | 3.1213 | 5.0 | 92980 | 3.3967 | 0.4009 | | 3.0783 | 6.0 | 111576 | 3.3773 | 0.4050 | | 3.0456 | 7.0 | 130172 | 3.3826 | 0.4055 | | 3.0126 | 8.0 | 148768 | 3.3547 | 0.4077 | | 2.9843 | 9.0 | 167364 | 3.3614 | 0.4083 | | 2.9592 | 10.0 | 185960 | 3.3779 | 0.4085 | | 2.9367 | 11.0 | 204556 | 3.3604 | 0.4099 | | 2.9145 | 12.0 | 223152 | 3.3759 | 0.4097 | | 2.8924 | 13.0 | 241748 | 3.3856 | 0.4096 | | 2.8757 | 14.0 | 260344 | 3.3844 | 0.4105 | | 2.8545 | 15.0 | 278940 | 3.3832 | 0.4107 | | 2.8339 | 16.0 | 297536 | 3.4079 | 0.4098 | | 2.8157 | 17.0 | 316132 | 3.3884 | 0.4104 | | 2.7966 | 18.0 | 334728 | 3.4081 | 0.4105 | | 2.7807 | 19.0 | 353324 | 3.4181 | 0.4104 | | 2.7595 | 20.0 | 371920 | 3.4236 | 0.4102 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.19.1