smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3

This model was trained from scratch on the kanishka/counterfactual_babylm_aann_high_variability_numeral dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4236
  • Accuracy: 0.4102

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5932 1.0 18596 3.7701 0.3588
3.3833 2.0 37192 3.5597 0.3819
3.2597 3.0 55788 3.4648 0.3927
3.1741 4.0 74384 3.4191 0.3977
3.1213 5.0 92980 3.3967 0.4009
3.0783 6.0 111576 3.3773 0.4050
3.0456 7.0 130172 3.3826 0.4055
3.0126 8.0 148768 3.3547 0.4077
2.9843 9.0 167364 3.3614 0.4083
2.9592 10.0 185960 3.3779 0.4085
2.9367 11.0 204556 3.3604 0.4099
2.9145 12.0 223152 3.3759 0.4097
2.8924 13.0 241748 3.3856 0.4096
2.8757 14.0 260344 3.3844 0.4105
2.8545 15.0 278940 3.3832 0.4107
2.8339 16.0 297536 3.4079 0.4098
2.8157 17.0 316132 3.3884 0.4104
2.7966 18.0 334728 3.4081 0.4105
2.7807 19.0 353324 3.4181 0.4104
2.7595 20.0 371920 3.4236 0.4102

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-seed_1024-1e-3

Evaluation results

  • Accuracy on kanishka/counterfactual_babylm_aann_high_variability_numeral
    self-reported
    0.410