ner_cs / README.md
izaitova's picture
End of training
acdf4a4 verified
metadata
license: apache-2.0
base_model: google/mt5-large
tags:
  - generated_from_trainer
model-index:
  - name: ner_cs
    results: []

ner_cs

This model is a fine-tuned version of google/mt5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5017
  • Loc: {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637}
  • Org: {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463}
  • Per: {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419}
  • Overall Precision: 0.8672
  • Overall Recall: 0.9072
  • Overall F1: 0.8867
  • Overall Accuracy: 0.9365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Loc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
0.2192 5.71 5000 0.2824 {'precision': 0.8384728340675477, 'recall': 0.8963893249607535, 'f1': 0.8664643399089529, 'number': 637} {'precision': 0.808641975308642, 'recall': 0.8488120950323974, 'f1': 0.8282402528977871, 'number': 463} {'precision': 0.9325581395348838, 'recall': 0.9570405727923628, 'f1': 0.944640753828033, 'number': 419} 0.8547 0.8986 0.8761 0.9363
0.0244 11.43 10000 0.4134 {'precision': 0.8622754491017964, 'recall': 0.9042386185243328, 'f1': 0.8827586206896552, 'number': 637} {'precision': 0.841991341991342, 'recall': 0.8401727861771058, 'f1': 0.8410810810810811, 'number': 463} {'precision': 0.920814479638009, 'recall': 0.9713603818615751, 'f1': 0.9454123112659697, 'number': 419} 0.8728 0.9032 0.8877 0.9370
0.0066 17.14 15000 0.5017 {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637} {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463} {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419} 0.8672 0.9072 0.8867 0.9365

Framework versions

  • Transformers 4.39.3
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.20.0
  • Tokenizers 0.15.2