izaitova commited on
Commit
acdf4a4
·
verified ·
1 Parent(s): 807c527

End of training

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/mt5-large
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ner_cs
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ner_cs
15
+
16
+ This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5017
19
+ - Loc: {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637}
20
+ - Org: {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463}
21
+ - Per: {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419}
22
+ - Overall Precision: 0.8672
23
+ - Overall Recall: 0.9072
24
+ - Overall F1: 0.8867
25
+ - Overall Accuracy: 0.9365
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 20
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Loc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
+ | 0.2192 | 5.71 | 5000 | 0.2824 | {'precision': 0.8384728340675477, 'recall': 0.8963893249607535, 'f1': 0.8664643399089529, 'number': 637} | {'precision': 0.808641975308642, 'recall': 0.8488120950323974, 'f1': 0.8282402528977871, 'number': 463} | {'precision': 0.9325581395348838, 'recall': 0.9570405727923628, 'f1': 0.944640753828033, 'number': 419} | 0.8547 | 0.8986 | 0.8761 | 0.9363 |
57
+ | 0.0244 | 11.43 | 10000 | 0.4134 | {'precision': 0.8622754491017964, 'recall': 0.9042386185243328, 'f1': 0.8827586206896552, 'number': 637} | {'precision': 0.841991341991342, 'recall': 0.8401727861771058, 'f1': 0.8410810810810811, 'number': 463} | {'precision': 0.920814479638009, 'recall': 0.9713603818615751, 'f1': 0.9454123112659697, 'number': 419} | 0.8728 | 0.9032 | 0.8877 | 0.9370 |
58
+ | 0.0066 | 17.14 | 15000 | 0.5017 | {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637} | {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463} | {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419} | 0.8672 | 0.9072 | 0.8867 | 0.9365 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.39.3
64
+ - Pytorch 1.11.0a0+17540c5
65
+ - Datasets 2.20.0
66
+ - Tokenizers 0.15.2