End of training
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/mt5-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: ner_cs
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# ner_cs
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.5017
|
19 |
+
- Loc: {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637}
|
20 |
+
- Org: {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463}
|
21 |
+
- Per: {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419}
|
22 |
+
- Overall Precision: 0.8672
|
23 |
+
- Overall Recall: 0.9072
|
24 |
+
- Overall F1: 0.8867
|
25 |
+
- Overall Accuracy: 0.9365
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Loc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| 0.2192 | 5.71 | 5000 | 0.2824 | {'precision': 0.8384728340675477, 'recall': 0.8963893249607535, 'f1': 0.8664643399089529, 'number': 637} | {'precision': 0.808641975308642, 'recall': 0.8488120950323974, 'f1': 0.8282402528977871, 'number': 463} | {'precision': 0.9325581395348838, 'recall': 0.9570405727923628, 'f1': 0.944640753828033, 'number': 419} | 0.8547 | 0.8986 | 0.8761 | 0.9363 |
|
57 |
+
| 0.0244 | 11.43 | 10000 | 0.4134 | {'precision': 0.8622754491017964, 'recall': 0.9042386185243328, 'f1': 0.8827586206896552, 'number': 637} | {'precision': 0.841991341991342, 'recall': 0.8401727861771058, 'f1': 0.8410810810810811, 'number': 463} | {'precision': 0.920814479638009, 'recall': 0.9713603818615751, 'f1': 0.9454123112659697, 'number': 419} | 0.8728 | 0.9032 | 0.8877 | 0.9370 |
|
58 |
+
| 0.0066 | 17.14 | 15000 | 0.5017 | {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637} | {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463} | {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419} | 0.8672 | 0.9072 | 0.8867 | 0.9365 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.39.3
|
64 |
+
- Pytorch 1.11.0a0+17540c5
|
65 |
+
- Datasets 2.20.0
|
66 |
+
- Tokenizers 0.15.2
|