ner_cs

This model is a fine-tuned version of google/mt5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5017
  • Loc: {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637}
  • Org: {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463}
  • Per: {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419}
  • Overall Precision: 0.8672
  • Overall Recall: 0.9072
  • Overall F1: 0.8867
  • Overall Accuracy: 0.9365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Loc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
0.2192 5.71 5000 0.2824 {'precision': 0.8384728340675477, 'recall': 0.8963893249607535, 'f1': 0.8664643399089529, 'number': 637} {'precision': 0.808641975308642, 'recall': 0.8488120950323974, 'f1': 0.8282402528977871, 'number': 463} {'precision': 0.9325581395348838, 'recall': 0.9570405727923628, 'f1': 0.944640753828033, 'number': 419} 0.8547 0.8986 0.8761 0.9363
0.0244 11.43 10000 0.4134 {'precision': 0.8622754491017964, 'recall': 0.9042386185243328, 'f1': 0.8827586206896552, 'number': 637} {'precision': 0.841991341991342, 'recall': 0.8401727861771058, 'f1': 0.8410810810810811, 'number': 463} {'precision': 0.920814479638009, 'recall': 0.9713603818615751, 'f1': 0.9454123112659697, 'number': 419} 0.8728 0.9032 0.8877 0.9370
0.0066 17.14 15000 0.5017 {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637} {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463} {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419} 0.8672 0.9072 0.8867 0.9365

Framework versions

  • Transformers 4.39.3
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.20.0
  • Tokenizers 0.15.2
Downloads last month
31
Safetensors
Model size
564M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for izaitova/ner_cs

Base model

google/mt5-large
Finetuned
(40)
this model