hiba2's picture
End of training
d2f038e verified
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: results_pegasus2-_wiki
    results: []

results_pegasus2-_wiki

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0771
  • Rouge1: 0.2644
  • Rouge2: 0.1159
  • Rougel: 0.264
  • Rougelsum: 0.2635
  • Gen Len: 248.7564

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.6037 0.5222 500 0.2910 0.0 0.0 0.0 0.0 223.1886
0.2787 1.0444 1000 0.2403 0.0515 0.0 0.0525 0.052 221.6974
0.2284 1.5666 1500 0.1922 0.0607 0.0 0.0621 0.0614 246.9666
0.1827 2.0888 2000 0.1775 0.1271 0.0176 0.129 0.1278 247.4322
0.167 2.6110 2500 0.1437 0.1591 0.0347 0.1597 0.1598 248.3084
0.1537 3.1332 3000 0.1301 0.1765 0.047 0.1765 0.1754 249.0864
0.14 3.6554 3500 0.1183 0.2082 0.059 0.2086 0.2077 248.2633
0.1306 4.1775 4000 0.1092 0.2095 0.0599 0.209 0.2083 246.5972
0.1272 4.6997 4500 0.1024 0.2181 0.0719 0.2177 0.2172 247.3752
0.1177 5.2219 5000 0.1013 0.2217 0.0725 0.2217 0.2211 247.4224
0.1123 5.7441 5500 0.0929 0.2242 0.0797 0.2249 0.2243 247.277
0.1114 6.2663 6000 0.0887 0.2335 0.0839 0.2334 0.233 247.3399
0.1073 6.7885 6500 0.0835 0.2452 0.0976 0.2461 0.2452 249.2043
0.1025 7.3107 7000 0.0821 0.2458 0.0971 0.2456 0.2455 246.2063
0.1009 7.8329 7500 0.0821 0.251 0.1009 0.2509 0.2508 248.7642
0.1004 8.3551 8000 0.0834 0.2583 0.1058 0.2587 0.258 248.7525
0.0965 8.8773 8500 0.0791 0.2621 0.116 0.2622 0.2621 248.7407
0.0975 9.3995 9000 0.0781 0.2619 0.1147 0.2613 0.2608 248.4185
0.0941 9.9217 9500 0.0771 0.2644 0.1159 0.264 0.2635 248.7564

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1