--- base_model: google/pegasus-large tags: - generated_from_trainer metrics: - rouge model-index: - name: results_pegasus2-_wiki results: [] --- # results_pegasus2-_wiki This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0771 - Rouge1: 0.2644 - Rouge2: 0.1159 - Rougel: 0.264 - Rougelsum: 0.2635 - Gen Len: 248.7564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | 2.6037 | 0.5222 | 500 | 0.2910 | 0.0 | 0.0 | 0.0 | 0.0 | 223.1886 | | 0.2787 | 1.0444 | 1000 | 0.2403 | 0.0515 | 0.0 | 0.0525 | 0.052 | 221.6974 | | 0.2284 | 1.5666 | 1500 | 0.1922 | 0.0607 | 0.0 | 0.0621 | 0.0614 | 246.9666 | | 0.1827 | 2.0888 | 2000 | 0.1775 | 0.1271 | 0.0176 | 0.129 | 0.1278 | 247.4322 | | 0.167 | 2.6110 | 2500 | 0.1437 | 0.1591 | 0.0347 | 0.1597 | 0.1598 | 248.3084 | | 0.1537 | 3.1332 | 3000 | 0.1301 | 0.1765 | 0.047 | 0.1765 | 0.1754 | 249.0864 | | 0.14 | 3.6554 | 3500 | 0.1183 | 0.2082 | 0.059 | 0.2086 | 0.2077 | 248.2633 | | 0.1306 | 4.1775 | 4000 | 0.1092 | 0.2095 | 0.0599 | 0.209 | 0.2083 | 246.5972 | | 0.1272 | 4.6997 | 4500 | 0.1024 | 0.2181 | 0.0719 | 0.2177 | 0.2172 | 247.3752 | | 0.1177 | 5.2219 | 5000 | 0.1013 | 0.2217 | 0.0725 | 0.2217 | 0.2211 | 247.4224 | | 0.1123 | 5.7441 | 5500 | 0.0929 | 0.2242 | 0.0797 | 0.2249 | 0.2243 | 247.277 | | 0.1114 | 6.2663 | 6000 | 0.0887 | 0.2335 | 0.0839 | 0.2334 | 0.233 | 247.3399 | | 0.1073 | 6.7885 | 6500 | 0.0835 | 0.2452 | 0.0976 | 0.2461 | 0.2452 | 249.2043 | | 0.1025 | 7.3107 | 7000 | 0.0821 | 0.2458 | 0.0971 | 0.2456 | 0.2455 | 246.2063 | | 0.1009 | 7.8329 | 7500 | 0.0821 | 0.251 | 0.1009 | 0.2509 | 0.2508 | 248.7642 | | 0.1004 | 8.3551 | 8000 | 0.0834 | 0.2583 | 0.1058 | 0.2587 | 0.258 | 248.7525 | | 0.0965 | 8.8773 | 8500 | 0.0791 | 0.2621 | 0.116 | 0.2622 | 0.2621 | 248.7407 | | 0.0975 | 9.3995 | 9000 | 0.0781 | 0.2619 | 0.1147 | 0.2613 | 0.2608 | 248.4185 | | 0.0941 | 9.9217 | 9500 | 0.0771 | 0.2644 | 0.1159 | 0.264 | 0.2635 | 248.7564 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1