File size: 3,518 Bytes
d2f038e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: google/pegasus-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: results_pegasus2-_wiki
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results_pegasus2-_wiki

This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0771
- Rouge1: 0.2644
- Rouge2: 0.1159
- Rougel: 0.264
- Rougelsum: 0.2635
- Gen Len: 248.7564

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len  |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| 2.6037        | 0.5222 | 500  | 0.2910          | 0.0    | 0.0    | 0.0    | 0.0       | 223.1886 |
| 0.2787        | 1.0444 | 1000 | 0.2403          | 0.0515 | 0.0    | 0.0525 | 0.052     | 221.6974 |
| 0.2284        | 1.5666 | 1500 | 0.1922          | 0.0607 | 0.0    | 0.0621 | 0.0614    | 246.9666 |
| 0.1827        | 2.0888 | 2000 | 0.1775          | 0.1271 | 0.0176 | 0.129  | 0.1278    | 247.4322 |
| 0.167         | 2.6110 | 2500 | 0.1437          | 0.1591 | 0.0347 | 0.1597 | 0.1598    | 248.3084 |
| 0.1537        | 3.1332 | 3000 | 0.1301          | 0.1765 | 0.047  | 0.1765 | 0.1754    | 249.0864 |
| 0.14          | 3.6554 | 3500 | 0.1183          | 0.2082 | 0.059  | 0.2086 | 0.2077    | 248.2633 |
| 0.1306        | 4.1775 | 4000 | 0.1092          | 0.2095 | 0.0599 | 0.209  | 0.2083    | 246.5972 |
| 0.1272        | 4.6997 | 4500 | 0.1024          | 0.2181 | 0.0719 | 0.2177 | 0.2172    | 247.3752 |
| 0.1177        | 5.2219 | 5000 | 0.1013          | 0.2217 | 0.0725 | 0.2217 | 0.2211    | 247.4224 |
| 0.1123        | 5.7441 | 5500 | 0.0929          | 0.2242 | 0.0797 | 0.2249 | 0.2243    | 247.277  |
| 0.1114        | 6.2663 | 6000 | 0.0887          | 0.2335 | 0.0839 | 0.2334 | 0.233     | 247.3399 |
| 0.1073        | 6.7885 | 6500 | 0.0835          | 0.2452 | 0.0976 | 0.2461 | 0.2452    | 249.2043 |
| 0.1025        | 7.3107 | 7000 | 0.0821          | 0.2458 | 0.0971 | 0.2456 | 0.2455    | 246.2063 |
| 0.1009        | 7.8329 | 7500 | 0.0821          | 0.251  | 0.1009 | 0.2509 | 0.2508    | 248.7642 |
| 0.1004        | 8.3551 | 8000 | 0.0834          | 0.2583 | 0.1058 | 0.2587 | 0.258     | 248.7525 |
| 0.0965        | 8.8773 | 8500 | 0.0791          | 0.2621 | 0.116  | 0.2622 | 0.2621    | 248.7407 |
| 0.0975        | 9.3995 | 9000 | 0.0781          | 0.2619 | 0.1147 | 0.2613 | 0.2608    | 248.4185 |
| 0.0941        | 9.9217 | 9500 | 0.0771          | 0.2644 | 0.1159 | 0.264  | 0.2635    | 248.7564 |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1