metadata
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_base_lda_100_v1_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6911764705882353
- name: F1
type: f1
value: 0.8061538461538462
bert_base_lda_100_v1_mrpc
This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda_100_v1 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.5799
- Accuracy: 0.6912
- F1: 0.8062
- Combined Score: 0.7487
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6665 | 1.0 | 15 | 0.6144 | 0.6667 | 0.7606 | 0.7136 |
0.594 | 2.0 | 30 | 0.5915 | 0.7059 | 0.7952 | 0.7506 |
0.575 | 3.0 | 45 | 0.5799 | 0.6912 | 0.8062 | 0.7487 |
0.5285 | 4.0 | 60 | 0.5993 | 0.7034 | 0.7987 | 0.7511 |
0.4277 | 5.0 | 75 | 0.6557 | 0.6765 | 0.7537 | 0.7151 |
0.3244 | 6.0 | 90 | 0.8220 | 0.6961 | 0.8025 | 0.7493 |
0.2387 | 7.0 | 105 | 0.8552 | 0.6422 | 0.7256 | 0.6839 |
0.1466 | 8.0 | 120 | 1.0601 | 0.6691 | 0.7700 | 0.7196 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3