File size: 2,572 Bytes
7e55281
 
a9d9d92
 
7e55281
 
 
a9d9d92
 
7e55281
 
 
 
 
a9d9d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e55281
 
 
 
 
 
 
a9d9d92
7e55281
a9d9d92
 
 
 
7e55281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d99a34
7e55281
 
 
 
 
 
 
 
 
 
 
4d99a34
 
 
 
 
 
 
 
7e55281
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_base_lda_100_v1_mrpc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE MRPC
      type: glue
      args: mrpc
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6911764705882353
    - name: F1
      type: f1
      value: 0.8061538461538462
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_base_lda_100_v1_mrpc

This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5799
- Accuracy: 0.6912
- F1: 0.8062
- Combined Score: 0.7487

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6665        | 1.0   | 15   | 0.6144          | 0.6667   | 0.7606 | 0.7136         |
| 0.594         | 2.0   | 30   | 0.5915          | 0.7059   | 0.7952 | 0.7506         |
| 0.575         | 3.0   | 45   | 0.5799          | 0.6912   | 0.8062 | 0.7487         |
| 0.5285        | 4.0   | 60   | 0.5993          | 0.7034   | 0.7987 | 0.7511         |
| 0.4277        | 5.0   | 75   | 0.6557          | 0.6765   | 0.7537 | 0.7151         |
| 0.3244        | 6.0   | 90   | 0.8220          | 0.6961   | 0.8025 | 0.7493         |
| 0.2387        | 7.0   | 105  | 0.8552          | 0.6422   | 0.7256 | 0.6839         |
| 0.1466        | 8.0   | 120  | 1.0601          | 0.6691   | 0.7700 | 0.7196         |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3