--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_base_lda_100_v1_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6911764705882353 - name: F1 type: f1 value: 0.8061538461538462 --- # bert_base_lda_100_v1_mrpc This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5799 - Accuracy: 0.6912 - F1: 0.8062 - Combined Score: 0.7487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6665 | 1.0 | 15 | 0.6144 | 0.6667 | 0.7606 | 0.7136 | | 0.594 | 2.0 | 30 | 0.5915 | 0.7059 | 0.7952 | 0.7506 | | 0.575 | 3.0 | 45 | 0.5799 | 0.6912 | 0.8062 | 0.7487 | | 0.5285 | 4.0 | 60 | 0.5993 | 0.7034 | 0.7987 | 0.7511 | | 0.4277 | 5.0 | 75 | 0.6557 | 0.6765 | 0.7537 | 0.7151 | | 0.3244 | 6.0 | 90 | 0.8220 | 0.6961 | 0.8025 | 0.7493 | | 0.2387 | 7.0 | 105 | 0.8552 | 0.6422 | 0.7256 | 0.6839 | | 0.1466 | 8.0 | 120 | 1.0601 | 0.6691 | 0.7700 | 0.7196 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3