|
--- |
|
license: apache-2.0 |
|
base_model: gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: TinyLlama-1.1B-DPO-Function-Calling-3T |
|
results: [] |
|
datasets: |
|
- argilla/distilabel-intel-orca-dpo-pairs |
|
language: |
|
- en |
|
--- |
|
|
|
## TinyLlama-1.1B-DPO-Function-Calling-3T |
|
|
|
|
|
This model is a DPO fine tune of [gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T](https://huggingface.co/datasets/gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T) which itself was trained on: |
|
|
|
1. [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup) |
|
1. [gardner/glaive-function-calling-v2-sharegpt](https://huggingface.co/datasets/gardner/glaive-function-calling-v2-sharegpt) |
|
|
|
The model scores unusually high on GSM8K which indicates the glaive function calling dataset may introduce data contamination. |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
chat_template: chatml |
|
|
|
is_llama_derived_model: true |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
rl: dpo |
|
datasets: |
|
- path: argilla/distilabel-intel-orca-dpo-pairs |
|
split: train |
|
type: chatml.gardner |
|
|
|
dataset_prepared_path: ./dsprepare/argilla/distilabel-intel-orca-dpo-pairs |
|
val_set_size: 0.05 |
|
output_dir: ./TinyLlama-1.1B-DPO-Function-Calling-3T |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
pad_to_sequence_len: false |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
|
|
lora_r: 256 |
|
lora_alpha: 128 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_modules_to_save: |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
|
|
wandb_project: tinyllama |
|
wandb_entity: gardner |
|
wandb_name: tinyllama-distilabel-intel-orca-dpo-pairs |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 2 |
|
num_epochs: 3 |
|
optimizer: paged_adamw_8bit |
|
adam_beta2: 0.95 |
|
adam_epsilion: 0.00001 |
|
lr_scheduler: linear |
|
learning_rate: 1.414e-5 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpoint_kwargs: |
|
use_reentrant: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
eval_steps: |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
save_steps: 45 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.1 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
save_safetensors: true |
|
|
|
dataloader_num_workers: 16 |
|
dataloader_pin_memory: true |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# TinyLlama-1.1B-DPO-Function-Calling-3T |
|
|
|
This model is a fine-tuned version of [gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T](https://huggingface.co/gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T) on the None dataset. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.414e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- training_steps: 19289 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |