--- license: apache-2.0 base_model: gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T tags: - generated_from_trainer model-index: - name: TinyLlama-1.1B-DPO-Function-Calling-3T results: [] datasets: - argilla/distilabel-intel-orca-dpo-pairs language: - en --- ## TinyLlama-1.1B-DPO-Function-Calling-3T This model is a DPO fine tune of [gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T](https://huggingface.co/datasets/gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T) which itself was trained on: 1. [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup) 1. [gardner/glaive-function-calling-v2-sharegpt](https://huggingface.co/datasets/gardner/glaive-function-calling-v2-sharegpt) The model scores unusually high on GSM8K which indicates the glaive function calling dataset may introduce data contamination. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer chat_template: chatml is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false rl: dpo datasets: - path: argilla/distilabel-intel-orca-dpo-pairs split: train type: chatml.gardner dataset_prepared_path: ./dsprepare/argilla/distilabel-intel-orca-dpo-pairs val_set_size: 0.05 output_dir: ./TinyLlama-1.1B-DPO-Function-Calling-3T sequence_len: 4096 sample_packing: false pad_to_sequence_len: false adapter: lora lora_model_dir: lora_r: 256 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_modules_to_save: lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: tinyllama wandb_entity: gardner wandb_name: tinyllama-distilabel-intel-orca-dpo-pairs gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_8bit adam_beta2: 0.95 adam_epsilion: 0.00001 lr_scheduler: linear learning_rate: 1.414e-5 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true gradient_checkpoint_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: eval_table_size: eval_table_max_new_tokens: 128 save_steps: 45 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: save_safetensors: true dataloader_num_workers: 16 dataloader_pin_memory: true ```

# TinyLlama-1.1B-DPO-Function-Calling-3T This model is a fine-tuned version of [gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T](https://huggingface.co/gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T) on the None dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.414e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 19289 ### Training results ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0