File size: 3,463 Bytes
876a872
 
 
 
 
 
 
 
453a20a
 
 
 
876a872
 
453a20a
 
 
 
 
 
 
 
 
 
876a872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453a20a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
license: apache-2.0
base_model: gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T
tags:
- generated_from_trainer
model-index:
- name: TinyLlama-1.1B-DPO-Function-Calling-3T
  results: []
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
language:
- en
---

## TinyLlama-1.1B-DPO-Function-Calling-3T


This model is a DPO fine tune of [gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T](https://huggingface.co/datasets/gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T) which itself was trained on:

1. [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
1. [gardner/glaive-function-calling-v2-sharegpt](https://huggingface.co/datasets/gardner/glaive-function-calling-v2-sharegpt)

The model scores unusually high on GSM8K which indicates the glaive function calling dataset may introduce data contamination.


[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
chat_template: chatml

is_llama_derived_model: true

load_in_8bit: true
load_in_4bit: false
strict: false

rl: dpo
datasets:
  - path: argilla/distilabel-intel-orca-dpo-pairs
    split: train
    type: chatml.gardner

dataset_prepared_path: ./dsprepare/argilla/distilabel-intel-orca-dpo-pairs
val_set_size: 0.05
output_dir: ./TinyLlama-1.1B-DPO-Function-Calling-3T

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir:

lora_r: 256
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj


wandb_project: tinyllama
wandb_entity: gardner
wandb_name: tinyllama-distilabel-intel-orca-dpo-pairs

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilion: 0.00001
lr_scheduler: linear
learning_rate: 1.414e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
gradient_checkpoint_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
eval_steps:
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 45
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
save_safetensors: true

dataloader_num_workers: 16
dataloader_pin_memory: true

```

</details><br>

# TinyLlama-1.1B-DPO-Function-Calling-3T

This model is a fine-tuned version of [gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T](https://huggingface.co/gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T) on the None dataset.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.414e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 19289

### Training results



### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0