dolo650's picture
Update README.md
bbaf28a
---
library_name: peft
base_model: google/flan-t5-base
---
# Model Card for Model ID
This is a flan-t5-base model finetuned using QLoRA (PEFT)
on dialogSum dataset : https://huggingface.co/datasets/knkarthick/dialogsum
## Model Details
### Training Details:
This is just a basic fine tuned model using below training args and params
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=['q','k','v','o'],
lora_dropout=.05,
bias='none',
task_type=TaskType.SEQ_2_SEQ_LM #flan-t5
)
output_dir = f'/kaggle/working/qlora-peft-flant5-base-dialogue-summary-training-{str(int(time.time()))}'
peft_training_args_4bit = TrainingArguments(
output_dir=output_dir,
auto_find_batch_size=True,
learning_rate=1e-3, # Higher learning rate than full fine-tuning.
num_train_epochs=200,
logging_steps=10,
max_steps=200
)
peft_trainer_4bit = Trainer(
model=peft_model_4bit,
args=peft_training_args_4bit,
train_dataset=tokenized_dataset_cleaned["train"],
eval_dataset=tokenized_dataset_cleaned['validation']
)
Recorded training loss as below:
Step Training Loss
10 29.131100
20 4.856900
30 3.241400
40 1.346500
50 0.560900
60 0.344000
70 0.258600
80 0.201600
90 0.202900
100 0.198700
110 0.185000
120 0.177200
130 0.161400
140 0.164200
150 0.164300
160 0.165800
170 0.168700
180 0.155100
190 0.161200
200 0.170300
Rouge1 score for 100 test dataset(out of 1500) is :
ORIGINAL MODEL:
{'rouge1': 0.2232663790087573, 'rouge2': 0.06084131871447254, 'rougeL': 0.1936115999187245, 'rougeLsum': 0.19319411133637282}
PEFT MODEL:
{'rouge1': 0.34502805897556865, 'rouge2': 0.11517693222074701, 'rougeL': 0.2800665095598698, 'rougeLsum': 0.27941257109947587}
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1