--- library_name: peft base_model: google/flan-t5-base --- # Model Card for Model ID This is a flan-t5-base model finetuned using QLoRA (PEFT) on dialogSum dataset : https://huggingface.co/datasets/knkarthick/dialogsum ## Model Details ### Training Details: This is just a basic fine tuned model using below training args and params lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=['q','k','v','o'], lora_dropout=.05, bias='none', task_type=TaskType.SEQ_2_SEQ_LM #flan-t5 ) output_dir = f'/kaggle/working/qlora-peft-flant5-base-dialogue-summary-training-{str(int(time.time()))}' peft_training_args_4bit = TrainingArguments( output_dir=output_dir, auto_find_batch_size=True, learning_rate=1e-3, # Higher learning rate than full fine-tuning. num_train_epochs=200, logging_steps=10, max_steps=200 ) peft_trainer_4bit = Trainer( model=peft_model_4bit, args=peft_training_args_4bit, train_dataset=tokenized_dataset_cleaned["train"], eval_dataset=tokenized_dataset_cleaned['validation'] ) Recorded training loss as below: Step Training Loss 10 29.131100 20 4.856900 30 3.241400 40 1.346500 50 0.560900 60 0.344000 70 0.258600 80 0.201600 90 0.202900 100 0.198700 110 0.185000 120 0.177200 130 0.161400 140 0.164200 150 0.164300 160 0.165800 170 0.168700 180 0.155100 190 0.161200 200 0.170300 Rouge1 score for 100 test dataset(out of 1500) is : ORIGINAL MODEL: {'rouge1': 0.2232663790087573, 'rouge2': 0.06084131871447254, 'rougeL': 0.1936115999187245, 'rougeLsum': 0.19319411133637282} PEFT MODEL: {'rouge1': 0.34502805897556865, 'rouge2': 0.11517693222074701, 'rougeL': 0.2800665095598698, 'rougeLsum': 0.27941257109947587} ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1