dolo650 commited on
Commit
bbaf28a
·
1 Parent(s): 3123e35

Update README.md

Browse files

Added basic details on finetuning parameters, ROUGE1 score etc.

Files changed (1) hide show
  1. README.md +66 -21
README.md CHANGED
@@ -5,33 +5,78 @@ base_model: google/flan-t5-base
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
10
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
 
5
 
6
  # Model Card for Model ID
7
 
8
+ This is a flan-t5-base model finetuned using QLoRA (PEFT)
9
+ on dialogSum dataset : https://huggingface.co/datasets/knkarthick/dialogsum
10
 
11
 
12
 
 
 
 
 
 
 
13
 
14
+ ## Model Details
15
 
16
+ ### Training Details:
17
+
18
+ This is just a basic fine tuned model using below training args and params
19
+
20
+ lora_config = LoraConfig(
21
+ r=16,
22
+ lora_alpha=32,
23
+ target_modules=['q','k','v','o'],
24
+ lora_dropout=.05,
25
+ bias='none',
26
+ task_type=TaskType.SEQ_2_SEQ_LM #flan-t5
27
+ )
28
+
29
+
30
+ output_dir = f'/kaggle/working/qlora-peft-flant5-base-dialogue-summary-training-{str(int(time.time()))}'
31
+
32
+ peft_training_args_4bit = TrainingArguments(
33
+ output_dir=output_dir,
34
+ auto_find_batch_size=True,
35
+ learning_rate=1e-3, # Higher learning rate than full fine-tuning.
36
+ num_train_epochs=200,
37
+ logging_steps=10,
38
+ max_steps=200
39
+ )
40
+
41
+ peft_trainer_4bit = Trainer(
42
+ model=peft_model_4bit,
43
+ args=peft_training_args_4bit,
44
+ train_dataset=tokenized_dataset_cleaned["train"],
45
+ eval_dataset=tokenized_dataset_cleaned['validation']
46
+ )
47
+
48
+
49
+ Recorded training loss as below:
50
+
51
+ Step Training Loss
52
+ 10 29.131100
53
+ 20 4.856900
54
+ 30 3.241400
55
+ 40 1.346500
56
+ 50 0.560900
57
+ 60 0.344000
58
+ 70 0.258600
59
+ 80 0.201600
60
+ 90 0.202900
61
+ 100 0.198700
62
+ 110 0.185000
63
+ 120 0.177200
64
+ 130 0.161400
65
+ 140 0.164200
66
+ 150 0.164300
67
+ 160 0.165800
68
+ 170 0.168700
69
+ 180 0.155100
70
+ 190 0.161200
71
+ 200 0.170300
72
+
73
+
74
+ Rouge1 score for 100 test dataset(out of 1500) is :
75
+ ORIGINAL MODEL:
76
+ {'rouge1': 0.2232663790087573, 'rouge2': 0.06084131871447254, 'rougeL': 0.1936115999187245, 'rougeLsum': 0.19319411133637282}
77
+ PEFT MODEL:
78
+ {'rouge1': 0.34502805897556865, 'rouge2': 0.11517693222074701, 'rougeL': 0.2800665095598698, 'rougeLsum': 0.27941257109947587}
79
 
 
 
 
80
 
81
  ## Uses
82