|
--- |
|
size_categories: |
|
- n<1K |
|
task_categories: |
|
- image-classification |
|
- image-segmentation |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': antelope |
|
'1': badger |
|
'2': bat |
|
'3': bear |
|
'4': bee |
|
'5': beetle |
|
'6': bison |
|
'7': boar |
|
'8': butterfly |
|
'9': cat |
|
'10': caterpillar |
|
'11': chimpanzee |
|
'12': cockroach |
|
'13': cow |
|
'14': coyote |
|
'15': crab |
|
'16': crow |
|
'17': deer |
|
'18': dog |
|
'19': dolphin |
|
'20': donkey |
|
'21': dragonfly |
|
'22': duck |
|
'23': eagle |
|
'24': elephant |
|
'25': flamingo |
|
'26': fly |
|
'27': fox |
|
'28': goat |
|
'29': goldfish |
|
'30': goose |
|
'31': gorilla |
|
'32': grasshopper |
|
'33': hamster |
|
'34': hare |
|
'35': hedgehog |
|
'36': hippopotamus |
|
'37': hornbill |
|
'38': horse |
|
'39': hummingbird |
|
'40': hyena |
|
'41': jellyfish |
|
'42': kangaroo |
|
'43': koala |
|
'44': ladybugs |
|
'45': leopard |
|
'46': lion |
|
'47': lizard |
|
'48': lobster |
|
'49': mosquito |
|
'50': moth |
|
'51': mouse |
|
'52': octopus |
|
'53': okapi |
|
'54': orangutan |
|
'55': otter |
|
'56': owl |
|
'57': ox |
|
'58': oyster |
|
'59': panda |
|
'60': parrot |
|
'61': pelecaniformes |
|
'62': penguin |
|
'63': pig |
|
'64': pigeon |
|
'65': porcupine |
|
'66': possum |
|
'67': raccoon |
|
'68': rat |
|
'69': reindeer |
|
'70': rhinoceros |
|
'71': sandpiper |
|
'72': seahorse |
|
'73': seal |
|
'74': shark |
|
'75': sheep |
|
'76': snake |
|
'77': sparrow |
|
'78': squid |
|
'79': squirrel |
|
'80': starfish |
|
'81': swan |
|
'82': tiger |
|
'83': turkey |
|
'84': turtle |
|
'85': whale |
|
'86': wolf |
|
'87': wombat |
|
'88': woodpecker |
|
'89': zebra |
|
splits: |
|
- name: train |
|
num_bytes: 520059675.84 |
|
num_examples: 4320 |
|
- name: test |
|
num_bytes: 138887701.08 |
|
num_examples: 1080 |
|
download_size: 696270301 |
|
dataset_size: 658947376.92 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
tags: |
|
- animals |
|
--- |
|
|
|
# Dataset Card for Dataset Name |
|
|
|
This dataset is a port of the ["Animal Image Dataset"](https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals) that you can find on Kaggle. |
|
The dataset contains 60 pictures for 90 types of animals, with various image sizes. |
|
|
|
With respect to the original dataset, I created the train-test-split partitions (80%/20%) to make it compatible via HuggingFace `datasets`. |
|
|
|
**Note**. At the time of writing, by looking at the Croissant ML Metadata, the original license of the data is `sc:CreativeWork`. If you believe this dataset violates any license, please |
|
open an issue in the discussion tab, so I can take action as soon as possible. |
|
|
|
## How to use this data |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# for exploration |
|
ds = load_dataset("lucabaggi/animal-wildlife", split="train") |
|
|
|
# for training |
|
ds = load_dataset("lucabaggi/animal-wildlife") |
|
``` |
|
|
|
## How the data was generated |
|
|
|
You can find the source code for the extraction pipeline [here](./extract.py). Note: partly generated with Claude3 and Codestral 😎😅 Please feel free to open an issue in the discussion sction if you wish to improve the code. |
|
|
|
``` |
|
$ uv run --python=3.11 -- python -m extract --help |
|
|
|
usage: extract.py [-h] [--destination-dir DESTINATION_DIR] [--split-ratio SPLIT_RATIO] [--random-seed RANDOM_SEED] [--remove-zip] zip_file |
|
|
|
Reorganize dataset. |
|
|
|
positional arguments: |
|
zip_file Path to the zip file. |
|
|
|
options: |
|
-h, --help show this help message and exit |
|
--destination-dir DESTINATION_DIR |
|
Path to the destination directory. |
|
--split-ratio SPLIT_RATIO |
|
Ratio of data to be used for training. |
|
--random-seed RANDOM_SEED |
|
Random seed for reproducibility. |
|
--remove-zip Whether to remove the source zip archive file after extraction. |
|
``` |
|
|
|
Example usage: |
|
|
|
1. Download the data from Kaggle. You can use Kaggle Python SDK, but that might require an API key if you use it locally. |
|
|
|
2. Invoke the script: |
|
|
|
```bash |
|
uv run --python=3.11 -- python -m extract -- archive.zip |
|
``` |
|
|
|
This will explode the contents of the zip archive into a `data` directory, splitting the train and test dataset in a 80%/20% ratio. |
|
|
|
3. Upload to the hub: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_datset("imagefolder", data_dir="data") |
|
ds.push_to_hub() |
|
``` |