File size: 5,034 Bytes
4be1394
c750ec3
 
 
 
 
4be1394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c750ec3
 
4be1394
c750ec3
 
 
 
4be1394
 
 
 
 
 
 
33e4e5b
 
4be1394
33e4e5b
 
 
 
 
 
b302a03
 
33e4e5b
df75716
b302a03
 
 
 
 
 
 
ad325cb
b302a03
 
 
 
 
 
 
ae76bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
size_categories:
- n<1K
task_categories:
- image-classification
- image-segmentation
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': antelope
          '1': badger
          '2': bat
          '3': bear
          '4': bee
          '5': beetle
          '6': bison
          '7': boar
          '8': butterfly
          '9': cat
          '10': caterpillar
          '11': chimpanzee
          '12': cockroach
          '13': cow
          '14': coyote
          '15': crab
          '16': crow
          '17': deer
          '18': dog
          '19': dolphin
          '20': donkey
          '21': dragonfly
          '22': duck
          '23': eagle
          '24': elephant
          '25': flamingo
          '26': fly
          '27': fox
          '28': goat
          '29': goldfish
          '30': goose
          '31': gorilla
          '32': grasshopper
          '33': hamster
          '34': hare
          '35': hedgehog
          '36': hippopotamus
          '37': hornbill
          '38': horse
          '39': hummingbird
          '40': hyena
          '41': jellyfish
          '42': kangaroo
          '43': koala
          '44': ladybugs
          '45': leopard
          '46': lion
          '47': lizard
          '48': lobster
          '49': mosquito
          '50': moth
          '51': mouse
          '52': octopus
          '53': okapi
          '54': orangutan
          '55': otter
          '56': owl
          '57': ox
          '58': oyster
          '59': panda
          '60': parrot
          '61': pelecaniformes
          '62': penguin
          '63': pig
          '64': pigeon
          '65': porcupine
          '66': possum
          '67': raccoon
          '68': rat
          '69': reindeer
          '70': rhinoceros
          '71': sandpiper
          '72': seahorse
          '73': seal
          '74': shark
          '75': sheep
          '76': snake
          '77': sparrow
          '78': squid
          '79': squirrel
          '80': starfish
          '81': swan
          '82': tiger
          '83': turkey
          '84': turtle
          '85': whale
          '86': wolf
          '87': wombat
          '88': woodpecker
          '89': zebra
  splits:
  - name: train
    num_bytes: 520059675.84
    num_examples: 4320
  - name: test
    num_bytes: 138887701.08
    num_examples: 1080
  download_size: 696270301
  dataset_size: 658947376.92
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
tags:
- animals
---

# Dataset Card for Dataset Name

This dataset is a port of the ["Animal Image Dataset"](https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals) that you can find on Kaggle.
The dataset contains 60 pictures for 90 types of animals, with various image sizes.

With respect to the original dataset, I created the train-test-split partitions (80%/20%) to make it compatible via HuggingFace `datasets`.

**Note**. At the time of writing, by looking at the Croissant ML Metadata, the original license of the data is `sc:CreativeWork`. If you believe this dataset violates any license, please 
open an issue in the discussion tab, so I can take action as soon as possible.

## How to use this data

```python
from datasets import load_dataset

# for exploration
ds = load_dataset("lucabaggi/animal-wildlife", split="train")

# for training
ds = load_dataset("lucabaggi/animal-wildlife")
```

## How the data was generated

You can find the source code for the extraction pipeline [here](./extract.py). Note: partly generated with Claude3 and Codestral 😎😅 Please feel free to open an issue in the discussion sction if you wish to improve the code.

```
$ uv run --python=3.11 -- python -m extract --help

usage: extract.py [-h] [--destination-dir DESTINATION_DIR] [--split-ratio SPLIT_RATIO] [--random-seed RANDOM_SEED] [--remove-zip] zip_file

Reorganize dataset.

positional arguments:
  zip_file              Path to the zip file.

options:
  -h, --help            show this help message and exit
  --destination-dir DESTINATION_DIR
                        Path to the destination directory.
  --split-ratio SPLIT_RATIO
                        Ratio of data to be used for training.
  --random-seed RANDOM_SEED
                        Random seed for reproducibility.
  --remove-zip          Whether to remove the source zip archive file after extraction.
```

Example usage:

1. Download the data from Kaggle. You can use Kaggle Python SDK, but that might require an API key if you use it locally.

2. Invoke the script:

```bash
uv run --python=3.11 -- python -m extract -- archive.zip
```

This will explode the contents of the zip archive into a `data` directory, splitting the train and test dataset in a 80%/20% ratio.

3. Upload to the hub:

```python
from datasets import load_dataset

ds = load_datset("imagefolder", data_dir="data")
ds.push_to_hub()
```