lucabaggi commited on
Commit
ae76bc4
·
verified ·
1 Parent(s): c750ec3

docs(readme): document extraction script usage (#7)

Browse files

- docs(readme): document extraction script usage (dced0d39c5d589c1a3d100a73e3932acb6f63d32)

Files changed (1) hide show
  1. README.md +43 -1
README.md CHANGED
@@ -146,4 +146,46 @@ ds = load_dataset("lucabaggi/animal-wildlife")
146
 
147
  ## How the data was generated
148
 
149
- You can find the script [here](./extract.py)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
  ## How the data was generated
148
 
149
+ You can find the source code for the extraction pipeline [here](./extract.py). Note: partly generated with Claude3 and Codestral 😎😅 Please feel free to open an issue in the discussion sction if you wish to improve the code.
150
+
151
+ ```
152
+ $ uv run --python=3.11 -- python -m extract --help
153
+
154
+ usage: extract.py [-h] [--destination-dir DESTINATION_DIR] [--split-ratio SPLIT_RATIO] [--random-seed RANDOM_SEED] [--remove-zip] zip_file
155
+
156
+ Reorganize dataset.
157
+
158
+ positional arguments:
159
+ zip_file Path to the zip file.
160
+
161
+ options:
162
+ -h, --help show this help message and exit
163
+ --destination-dir DESTINATION_DIR
164
+ Path to the destination directory.
165
+ --split-ratio SPLIT_RATIO
166
+ Ratio of data to be used for training.
167
+ --random-seed RANDOM_SEED
168
+ Random seed for reproducibility.
169
+ --remove-zip Whether to remove the source zip archive file after extraction.
170
+ ```
171
+
172
+ Example usage:
173
+
174
+ 1. Download the data from Kaggle. You can use Kaggle Python SDK, but that might require an API key if you use it locally.
175
+
176
+ 2. Invoke the script:
177
+
178
+ ```bash
179
+ uv run --python=3.11 -- python -m extract -- archive.zip
180
+ ```
181
+
182
+ This will explode the contents of the zip archive into a `data` directory, splitting the train and test dataset in a 80%/20% ratio.
183
+
184
+ 3. Upload to the hub:
185
+
186
+ ```python
187
+ from datasets import load_dataset
188
+
189
+ ds = load_datset("imagefolder", data_dir="data")
190
+ ds.push_to_hub()
191
+ ```