|
--- |
|
dataset_info: |
|
features: |
|
- name: question |
|
dtype: string |
|
- name: context |
|
dtype: string |
|
- name: score |
|
dtype: float64 |
|
- name: id |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: answers |
|
struct: |
|
- name: answer_start |
|
sequence: int64 |
|
- name: text |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 127996360 |
|
num_examples: 130319 |
|
- name: dev |
|
num_bytes: 10772220 |
|
num_examples: 10174 |
|
- name: test |
|
num_bytes: 1792665 |
|
num_examples: 1699 |
|
download_size: 18702176 |
|
dataset_size: 140561245 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: dev |
|
path: data/dev-* |
|
- split: test |
|
path: data/test-* |
|
license: cc-by-sa-4.0 |
|
language: |
|
- nl |
|
task_categories: |
|
- sentence-similarity |
|
- question-answering |
|
tags: |
|
- sentence-transformers |
|
pretty_name: SQuAD-NL v2.0 for Sentence TGransformers |
|
--- |
|
# SQuAD-NL v2.0 for Sentence Transformers |
|
|
|
The [SQuAD-NL v2.0](https://github.com/wietsedv/NLP-NL/tree/squad-nl-v1.0?tab=readme-ov-file#-squad-nl-translated-squad--xquad-question-answering) dataset (on Hugging Face: [GroNLP/squad-nl-v2.0](https://huggingface.co/datasets/GroNLP/squad-nl-v2.0)), modified for use in [Sentence Transformers](https://sbert.net/docs/sentence_transformer/dataset_overview.html) as a dataset of type "Pair with Similarity Score". |
|
|
|
## Score |
|
We added an extra column `score` to the original dataset. |
|
The value of `score` is `1.0` if the question has an answer in the context (no matter where), and `0.0` if there are no answers in the context. |
|
The allows the evaluation of embedding models that aim to pair queries and document fragments. |
|
Please note that is a very hard task for embedding models, because SQuAD v2.0 was specifically designed to contain unanswerable questions adversarially written to look similar to answerable ones. |
|
Expect your models to perform poorly. |
|
|
|
## Translations |
|
SQuAD-NL is translated from the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) and [XQuAD](https://github.com/google-deepmind/xquad) English-language datasets. |
|
From the [SQuAD-NL v2.0 Readme](https://github.com/wietsedv/NLP-NL/tree/squad-nl-v1.0?tab=readme-ov-file#v20): |
|
|
|
| Split | Source | Procedure | English | Dutch | |
|
| ----- | ---------------------- | ------------------------ | ------: | ------: | |
|
| train | SQuAD-train-v2.0 | Google Translate | 130,319 | 130,319 | |
|
| dev | SQuAD-dev-v2.0 \ XQuAD | Google Translate | 10,174 | 10,174 | |
|
| test | SQuAD-dev-v2.0 & XQuAD | Google Translate + Human | 1,699 | 1,699 | |
|
|
|
For testing Dutch sentence embedding models it is therefore recommended to only use the `test` split. |
|
Also it would be advisable to not train your model on the other splits, because you would train answering this specific style of questions into the model. |
|
|
|
## Example code using Sentence Transformers |
|
```python |
|
import pprint |
|
|
|
from datasets import load_dataset |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction |
|
|
|
|
|
eval_dataset = load_dataset('NetherlandsForensicInstitute/squad-nl-v2.0', split='test') |
|
|
|
evaluator = EmbeddingSimilarityEvaluator( |
|
sentences1=eval_dataset['question'], |
|
sentences2=eval_dataset['context'], |
|
scores=eval_dataset['score'], |
|
main_similarity=SimilarityFunction.COSINE, |
|
name="squad_nl_v2.0_test", |
|
) |
|
|
|
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers') |
|
|
|
results = evaluator(model) |
|
pprint.pprint(results) |
|
``` |
|
|
|
## Original dataset |
|
SQuAD-NL is a derivative of the [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) and [XQuAD](https://github.com/google-deepmind/xquad) datasets, and their original [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/legalcode) licenses apply. |
|
|
|
## Code used to generate this dataset |
|
<details> |
|
<summary>code</summary> |
|
|
|
```python |
|
import json |
|
|
|
import requests |
|
from datasets import Dataset, DatasetDict |
|
|
|
|
|
def squad(url): |
|
response = requests.get(url) |
|
|
|
rows = json.loads(response.text)['data'] |
|
|
|
for row in rows: |
|
yield {'question': row['question'], |
|
'context': row['context'], |
|
'score': 1.0 if row['answers']['text'] else 0., |
|
'id': row['id'], |
|
'title': row['title'], |
|
'answers': row['answers']} |
|
|
|
if __name__ == '__main__': |
|
url = 'https://github.com/wietsedv/NLP-NL/raw/refs/tags/squad-nl-v1.0/SQuAD-NL/nl/{split}-v2.0.json' |
|
|
|
dataset = DatasetDict({ |
|
split: Dataset.from_generator(squad, gen_kwargs={'url': url.format(split=split)}) |
|
for split in ('train', 'dev', 'test') |
|
}) |
|
|
|
dataset.push_to_hub('NetherlandsForensicInstitute/squad-nl-v2.0') |
|
``` |
|
|
|
</details> |