squad-nl-v2.0 / README.md
Rijgersberg's picture
Update README.md
062a7df verified
---
dataset_info:
features:
- name: question
dtype: string
- name: context
dtype: string
- name: score
dtype: float64
- name: id
dtype: string
- name: title
dtype: string
- name: answers
struct:
- name: answer_start
sequence: int64
- name: text
sequence: string
splits:
- name: train
num_bytes: 127996360
num_examples: 130319
- name: dev
num_bytes: 10772220
num_examples: 10174
- name: test
num_bytes: 1792665
num_examples: 1699
download_size: 18702176
dataset_size: 140561245
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: dev
path: data/dev-*
- split: test
path: data/test-*
license: cc-by-sa-4.0
language:
- nl
task_categories:
- sentence-similarity
- question-answering
tags:
- sentence-transformers
pretty_name: SQuAD-NL v2.0 for Sentence TGransformers
---
# SQuAD-NL v2.0 for Sentence Transformers
The [SQuAD-NL v2.0](https://github.com/wietsedv/NLP-NL/tree/squad-nl-v1.0?tab=readme-ov-file#-squad-nl-translated-squad--xquad-question-answering) dataset (on Hugging Face: [GroNLP/squad-nl-v2.0](https://huggingface.co/datasets/GroNLP/squad-nl-v2.0)), modified for use in [Sentence Transformers](https://sbert.net/docs/sentence_transformer/dataset_overview.html) as a dataset of type "Pair with Similarity Score".
## Score
We added an extra column `score` to the original dataset.
The value of `score` is `1.0` if the question has an answer in the context (no matter where), and `0.0` if there are no answers in the context.
The allows the evaluation of embedding models that aim to pair queries and document fragments.
Please note that is a very hard task for embedding models, because SQuAD v2.0 was specifically designed to contain unanswerable questions adversarially written to look similar to answerable ones.
Expect your models to perform poorly.
## Translations
SQuAD-NL is translated from the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) and [XQuAD](https://github.com/google-deepmind/xquad) English-language datasets.
From the [SQuAD-NL v2.0 Readme](https://github.com/wietsedv/NLP-NL/tree/squad-nl-v1.0?tab=readme-ov-file#v20):
| Split | Source | Procedure | English | Dutch |
| ----- | ---------------------- | ------------------------ | ------: | ------: |
| train | SQuAD-train-v2.0 | Google Translate | 130,319 | 130,319 |
| dev | SQuAD-dev-v2.0 \ XQuAD | Google Translate | 10,174 | 10,174 |
| test | SQuAD-dev-v2.0 & XQuAD | Google Translate + Human | 1,699 | 1,699 |
For testing Dutch sentence embedding models it is therefore recommended to only use the `test` split.
Also it would be advisable to not train your model on the other splits, because you would train answering this specific style of questions into the model.
## Example code using Sentence Transformers
```python
import pprint
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction
eval_dataset = load_dataset('NetherlandsForensicInstitute/squad-nl-v2.0', split='test')
evaluator = EmbeddingSimilarityEvaluator(
sentences1=eval_dataset['question'],
sentences2=eval_dataset['context'],
scores=eval_dataset['score'],
main_similarity=SimilarityFunction.COSINE,
name="squad_nl_v2.0_test",
)
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
results = evaluator(model)
pprint.pprint(results)
```
## Original dataset
SQuAD-NL is a derivative of the [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) and [XQuAD](https://github.com/google-deepmind/xquad) datasets, and their original [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/legalcode) licenses apply.
## Code used to generate this dataset
<details>
<summary>code</summary>
```python
import json
import requests
from datasets import Dataset, DatasetDict
def squad(url):
response = requests.get(url)
rows = json.loads(response.text)['data']
for row in rows:
yield {'question': row['question'],
'context': row['context'],
'score': 1.0 if row['answers']['text'] else 0.,
'id': row['id'],
'title': row['title'],
'answers': row['answers']}
if __name__ == '__main__':
url = 'https://github.com/wietsedv/NLP-NL/raw/refs/tags/squad-nl-v1.0/SQuAD-NL/nl/{split}-v2.0.json'
dataset = DatasetDict({
split: Dataset.from_generator(squad, gen_kwargs={'url': url.format(split=split)})
for split in ('train', 'dev', 'test')
})
dataset.push_to_hub('NetherlandsForensicInstitute/squad-nl-v2.0')
```
</details>