dataset_info:
features:
- name: question
dtype: string
- name: context
dtype: string
- name: score
dtype: float64
- name: id
dtype: string
- name: title
dtype: string
- name: answers
struct:
- name: answer_start
sequence: int64
- name: text
sequence: string
splits:
- name: train
num_bytes: 127996360
num_examples: 130319
- name: dev
num_bytes: 10772220
num_examples: 10174
- name: test
num_bytes: 1792665
num_examples: 1699
download_size: 18702176
dataset_size: 140561245
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: dev
path: data/dev-*
- split: test
path: data/test-*
license: cc-by-sa-4.0
language:
- nl
task_categories:
- sentence-similarity
- question-answering
tags:
- sentence-transformers
pretty_name: SQuAD-NL v2.0 for Sentence TGransformers
SQuAD-NL v2.0 for Sentence Transformers
The SQuAD-NL v2.0 dataset (on Hugging Face: GroNLP/squad-nl-v2.0), modified for use in Sentence Transformers as a dataset of type "Pair with Similarity Score".
Score
We added an extra column score
to the original dataset.
The value of score
is 1.0
if the question has an answer in the context (no matter where), and 0.0
if there are no answers in the context.
The allows the evaluation of embedding models that aim to pair queries and document fragments.
Please note that is a very hard task for embedding models, because SQuAD v2.0 was specifically designed to contain unanswerable questions adversarially written to look similar to answerable ones.
Expect your models to perform poorly.
Translations
SQuAD-NL is translated from the original SQuAD and XQuAD English-language datasets. From the SQuAD-NL v2.0 Readme:
Split | Source | Procedure | English | Dutch |
---|---|---|---|---|
train | SQuAD-train-v2.0 | Google Translate | 130,319 | 130,319 |
dev | SQuAD-dev-v2.0 \ XQuAD | Google Translate | 10,174 | 10,174 |
test | SQuAD-dev-v2.0 & XQuAD | Google Translate + Human | 1,699 | 1,699 |
For testing Dutch sentence embedding models it is therefore recommended to only use the test
split.
Also it would be advisable to not train your model on the other splits, because you would train answering this specific style of questions into the model.
Example code using Sentence Transformers
import pprint
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction
eval_dataset = load_dataset('NetherlandsForensicInstitute/squad-nl-v2.0', split='test')
evaluator = EmbeddingSimilarityEvaluator(
sentences1=eval_dataset['question'],
sentences2=eval_dataset['context'],
scores=eval_dataset['score'],
main_similarity=SimilarityFunction.COSINE,
name="squad_nl_v2.0_test",
)
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
results = evaluator(model)
pprint.pprint(results)
Original dataset
SQuAD-NL is a derivative of the SQuAD and XQuAD datasets, and their original CC BY-SA 4.0 licenses apply.
Code used to generate this dataset
code
import json
import requests
from datasets import Dataset, DatasetDict
def squad(url):
response = requests.get(url)
rows = json.loads(response.text)['data']
for row in rows:
yield {'question': row['question'],
'context': row['context'],
'score': 1.0 if row['answers']['text'] else 0.,
'id': row['id'],
'title': row['title'],
'answers': row['answers']}
if __name__ == '__main__':
url = 'https://github.com/wietsedv/NLP-NL/raw/refs/tags/squad-nl-v1.0/SQuAD-NL/nl/{split}-v2.0.json'
dataset = DatasetDict({
split: Dataset.from_generator(squad, gen_kwargs={'url': url.format(split=split)})
for split in ('train', 'dev', 'test')
})
dataset.push_to_hub('NetherlandsForensicInstitute/squad-nl-v2.0')