File size: 4,804 Bytes
daa4d09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c85d1
 
 
14578c1
 
 
ff58907
 
2524267
daa4d09
33c85d1
 
062a7df
33c85d1
 
 
 
4e56abb
ae6ab35
 
33c85d1
 
0d1a85b
eabc2c6
33c85d1
 
 
 
 
 
 
f544d0b
 
 
c3e1eb7
 
 
 
 
 
78157fc
c3e1eb7
 
 
 
78157fc
 
 
 
 
 
 
c3e1eb7
 
 
 
 
 
 
33c85d1
fcffc0e
 
 
 
76fad4d
 
cc21ada
fcffc0e
 
 
 
 
 
 
cc21ada
fcffc0e
cc21ada
fcffc0e
cc21ada
 
 
 
 
 
 
fcffc0e
 
cc21ada
fcffc0e
cc21ada
 
 
 
fcffc0e
cc21ada
fcffc0e
76fad4d
fcffc0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
dataset_info:
  features:
  - name: question
    dtype: string
  - name: context
    dtype: string
  - name: score
    dtype: float64
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: answers
    struct:
    - name: answer_start
      sequence: int64
    - name: text
      sequence: string
  splits:
  - name: train
    num_bytes: 127996360
    num_examples: 130319
  - name: dev
    num_bytes: 10772220
    num_examples: 10174
  - name: test
    num_bytes: 1792665
    num_examples: 1699
  download_size: 18702176
  dataset_size: 140561245
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: dev
    path: data/dev-*
  - split: test
    path: data/test-*
license: cc-by-sa-4.0
language:
- nl
task_categories:
- sentence-similarity
- question-answering
tags:
- sentence-transformers
pretty_name: SQuAD-NL v2.0 for Sentence TGransformers
---
# SQuAD-NL v2.0 for Sentence Transformers

The [SQuAD-NL v2.0](https://github.com/wietsedv/NLP-NL/tree/squad-nl-v1.0?tab=readme-ov-file#-squad-nl-translated-squad--xquad-question-answering) dataset (on Hugging Face: [GroNLP/squad-nl-v2.0](https://huggingface.co/datasets/GroNLP/squad-nl-v2.0)), modified for use in [Sentence Transformers](https://sbert.net/docs/sentence_transformer/dataset_overview.html) as a dataset of type "Pair with Similarity Score".

## Score
We added an extra column `score` to the original dataset.
The value of `score` is `1.0` if the question has an answer in the context (no matter where), and `0.0` if there are no answers in the context.
The allows the evaluation of embedding models that aim to pair queries and document fragments.
Please note that is a very hard task for embedding models, because SQuAD v2.0 was specifically designed to contain unanswerable questions adversarially written to look similar to answerable ones.
Expect your models to perform poorly.

## Translations
SQuAD-NL is translated from the original [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) and [XQuAD](https://github.com/google-deepmind/xquad) English-language datasets.
From the [SQuAD-NL v2.0 Readme](https://github.com/wietsedv/NLP-NL/tree/squad-nl-v1.0?tab=readme-ov-file#v20):

| Split | Source                 | Procedure                | English | Dutch   |
| ----- | ---------------------- | ------------------------ | ------: | ------: |
| train | SQuAD-train-v2.0       | Google Translate         | 130,319 | 130,319 |
| dev   | SQuAD-dev-v2.0 \ XQuAD | Google Translate         |  10,174 |  10,174 |
| test  | SQuAD-dev-v2.0 & XQuAD | Google Translate + Human |   1,699 |   1,699 |

For testing Dutch sentence embedding models it is therefore recommended to only use the `test` split.
Also it would be advisable to not train your model on the other splits, because you would train answering this specific style of questions into the model.

## Example code using Sentence Transformers
```python
import pprint

from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction


eval_dataset = load_dataset('NetherlandsForensicInstitute/squad-nl-v2.0', split='test')

evaluator = EmbeddingSimilarityEvaluator(
     sentences1=eval_dataset['question'],
     sentences2=eval_dataset['context'],
     scores=eval_dataset['score'],
     main_similarity=SimilarityFunction.COSINE,
     name="squad_nl_v2.0_test",
 )

model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')

results = evaluator(model)
pprint.pprint(results)
```

## Original dataset
SQuAD-NL is a derivative of the [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) and [XQuAD](https://github.com/google-deepmind/xquad) datasets, and their original [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/legalcode) licenses apply.

## Code used to generate this dataset
<details>
<summary>code</summary>
  
```python
import json

import requests
from datasets import Dataset, DatasetDict


def squad(url):
  response = requests.get(url)

  rows = json.loads(response.text)['data']

  for row in rows:
      yield {'question': row['question'],
             'context': row['context'],
             'score': 1.0 if row['answers']['text'] else 0.,
             'id': row['id'],
             'title': row['title'],
             'answers': row['answers']}

if __name__ == '__main__':
  url = 'https://github.com/wietsedv/NLP-NL/raw/refs/tags/squad-nl-v1.0/SQuAD-NL/nl/{split}-v2.0.json'

  dataset = DatasetDict({
      split: Dataset.from_generator(squad, gen_kwargs={'url': url.format(split=split)})
      for split in ('train', 'dev', 'test')
  })

  dataset.push_to_hub('NetherlandsForensicInstitute/squad-nl-v2.0')
```

</details>