aghannam's picture
update model card README.md
f2b9c99
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-medium-ar-no_diacritics
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 7.4970484061393154

whisper-medium-ar-no_diacritics

This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1762
  • Wer: 7.4970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1114 1.01 400 0.1300 9.9764
0.0682 2.02 800 0.1157 8.9138
0.0302 3.03 1200 0.1274 8.2645
0.0151 4.04 1600 0.1277 7.7922
0.0104 5.05 2000 0.1304 7.7922
0.0069 6.06 2400 0.1476 8.4416
0.0033 7.07 2800 0.1307 7.7332
0.0026 8.08 3200 0.1425 8.3235
0.001 9.09 3600 0.1530 8.2054
0.0006 10.1 4000 0.1586 7.9693
0.0008 11.11 4400 0.1601 7.6151
0.001 12.12 4800 0.1647 8.0874
0.001 13.13 5200 0.1650 7.7332
0.0001 14.14 5600 0.1671 7.4380
0.0001 15.15 6000 0.1694 7.2609
0.0001 16.16 6400 0.1726 7.4970
0.0002 17.17 6800 0.1744 7.4380
0.0001 18.18 7200 0.1752 7.4970
0.0 19.19 7600 0.1758 7.4970
0.0 20.2 8000 0.1762 7.4970

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2