--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-medium-ar-no_diacritics results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 7.4970484061393154 --- # whisper-medium-ar-no_diacritics This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1762 - Wer: 7.4970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1114 | 1.01 | 400 | 0.1300 | 9.9764 | | 0.0682 | 2.02 | 800 | 0.1157 | 8.9138 | | 0.0302 | 3.03 | 1200 | 0.1274 | 8.2645 | | 0.0151 | 4.04 | 1600 | 0.1277 | 7.7922 | | 0.0104 | 5.05 | 2000 | 0.1304 | 7.7922 | | 0.0069 | 6.06 | 2400 | 0.1476 | 8.4416 | | 0.0033 | 7.07 | 2800 | 0.1307 | 7.7332 | | 0.0026 | 8.08 | 3200 | 0.1425 | 8.3235 | | 0.001 | 9.09 | 3600 | 0.1530 | 8.2054 | | 0.0006 | 10.1 | 4000 | 0.1586 | 7.9693 | | 0.0008 | 11.11 | 4400 | 0.1601 | 7.6151 | | 0.001 | 12.12 | 4800 | 0.1647 | 8.0874 | | 0.001 | 13.13 | 5200 | 0.1650 | 7.7332 | | 0.0001 | 14.14 | 5600 | 0.1671 | 7.4380 | | 0.0001 | 15.15 | 6000 | 0.1694 | 7.2609 | | 0.0001 | 16.16 | 6400 | 0.1726 | 7.4970 | | 0.0002 | 17.17 | 6800 | 0.1744 | 7.4380 | | 0.0001 | 18.18 | 7200 | 0.1752 | 7.4970 | | 0.0 | 19.19 | 7600 | 0.1758 | 7.4970 | | 0.0 | 20.2 | 8000 | 0.1762 | 7.4970 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2