aghannam commited on
Commit
f2b9c99
·
1 Parent(s): 3b4e110

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - audiofolder
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: whisper-medium-ar-no_diacritics
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: audiofolder
17
+ type: audiofolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 7.4970484061393154
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # whisper-medium-ar-no_diacritics
31
+
32
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1762
35
+ - Wer: 7.4970
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-05
55
+ - train_batch_size: 24
56
+ - eval_batch_size: 24
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_steps: 500
61
+ - training_steps: 8000
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
68
+ | 0.1114 | 1.01 | 400 | 0.1300 | 9.9764 |
69
+ | 0.0682 | 2.02 | 800 | 0.1157 | 8.9138 |
70
+ | 0.0302 | 3.03 | 1200 | 0.1274 | 8.2645 |
71
+ | 0.0151 | 4.04 | 1600 | 0.1277 | 7.7922 |
72
+ | 0.0104 | 5.05 | 2000 | 0.1304 | 7.7922 |
73
+ | 0.0069 | 6.06 | 2400 | 0.1476 | 8.4416 |
74
+ | 0.0033 | 7.07 | 2800 | 0.1307 | 7.7332 |
75
+ | 0.0026 | 8.08 | 3200 | 0.1425 | 8.3235 |
76
+ | 0.001 | 9.09 | 3600 | 0.1530 | 8.2054 |
77
+ | 0.0006 | 10.1 | 4000 | 0.1586 | 7.9693 |
78
+ | 0.0008 | 11.11 | 4400 | 0.1601 | 7.6151 |
79
+ | 0.001 | 12.12 | 4800 | 0.1647 | 8.0874 |
80
+ | 0.001 | 13.13 | 5200 | 0.1650 | 7.7332 |
81
+ | 0.0001 | 14.14 | 5600 | 0.1671 | 7.4380 |
82
+ | 0.0001 | 15.15 | 6000 | 0.1694 | 7.2609 |
83
+ | 0.0001 | 16.16 | 6400 | 0.1726 | 7.4970 |
84
+ | 0.0002 | 17.17 | 6800 | 0.1744 | 7.4380 |
85
+ | 0.0001 | 18.18 | 7200 | 0.1752 | 7.4970 |
86
+ | 0.0 | 19.19 | 7600 | 0.1758 | 7.4970 |
87
+ | 0.0 | 20.2 | 8000 | 0.1762 | 7.4970 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.25.1
93
+ - Pytorch 1.12.1
94
+ - Datasets 2.8.0
95
+ - Tokenizers 0.13.2