DanukaLakshan's picture
Model save
fadebbb verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-skin-cancer
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8772455089820359

swin-tiny-patch4-window7-224-finetuned-skin-cancer

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3211
  • Accuracy: 0.8772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8717 0.9929 35 0.8160 0.6916
0.6289 1.9858 70 0.5764 0.8034
0.4878 2.9787 105 0.4994 0.8174
0.4392 4.0 141 0.4301 0.8493
0.3867 4.9929 176 0.4034 0.8573
0.3653 5.9858 211 0.3476 0.8693
0.3359 6.9787 246 0.3681 0.8643
0.2865 8.0 282 0.3578 0.8653
0.3041 8.9929 317 0.3245 0.8792
0.2869 9.9291 350 0.3211 0.8772

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0