--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-skin-cancer results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8772455089820359 --- # swin-tiny-patch4-window7-224-finetuned-skin-cancer This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3211 - Accuracy: 0.8772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8717 | 0.9929 | 35 | 0.8160 | 0.6916 | | 0.6289 | 1.9858 | 70 | 0.5764 | 0.8034 | | 0.4878 | 2.9787 | 105 | 0.4994 | 0.8174 | | 0.4392 | 4.0 | 141 | 0.4301 | 0.8493 | | 0.3867 | 4.9929 | 176 | 0.4034 | 0.8573 | | 0.3653 | 5.9858 | 211 | 0.3476 | 0.8693 | | 0.3359 | 6.9787 | 246 | 0.3681 | 0.8643 | | 0.2865 | 8.0 | 282 | 0.3578 | 0.8653 | | 0.3041 | 8.9929 | 317 | 0.3245 | 0.8792 | | 0.2869 | 9.9291 | 350 | 0.3211 | 0.8772 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0