DanukaLakshan
commited on
Model save
Browse files- README.md +88 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: swin-tiny-patch4-window7-224-finetuned-skin-cancer
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: imagefolder
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: train
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.8772455089820359
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# swin-tiny-patch4-window7-224-finetuned-skin-cancer
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.3211
|
37 |
+
- Accuracy: 0.8772
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 64
|
58 |
+
- eval_batch_size: 64
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 256
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 10
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.8717 | 0.9929 | 35 | 0.8160 | 0.6916 |
|
72 |
+
| 0.6289 | 1.9858 | 70 | 0.5764 | 0.8034 |
|
73 |
+
| 0.4878 | 2.9787 | 105 | 0.4994 | 0.8174 |
|
74 |
+
| 0.4392 | 4.0 | 141 | 0.4301 | 0.8493 |
|
75 |
+
| 0.3867 | 4.9929 | 176 | 0.4034 | 0.8573 |
|
76 |
+
| 0.3653 | 5.9858 | 211 | 0.3476 | 0.8693 |
|
77 |
+
| 0.3359 | 6.9787 | 246 | 0.3681 | 0.8643 |
|
78 |
+
| 0.2865 | 8.0 | 282 | 0.3578 | 0.8653 |
|
79 |
+
| 0.3041 | 8.9929 | 317 | 0.3245 | 0.8792 |
|
80 |
+
| 0.2869 | 9.9291 | 350 | 0.3211 | 0.8772 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.45.1
|
86 |
+
- Pytorch 2.4.0
|
87 |
+
- Datasets 3.0.1
|
88 |
+
- Tokenizers 0.20.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110358212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:449326ec7b54fe737247fec9f40c012d670264766a25dddff561d63b89731c4a
|
3 |
size 110358212
|