|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: bert-scam-classifier-v1.6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-scam-classifier-v1.6 |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0001 |
|
- Accuracy: {'accuracy': 1.0} |
|
- Precision: {'precision': 1.0} |
|
- Recall: {'recall': 1.0} |
|
- F1: {'f1': 1.0} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:-------------------------------:|:--------------------:|:--------------------------:| |
|
| No log | 1.0 | 160 | 0.0325 | {'accuracy': 0.990625} | {'precision': 0.99079754601227} | {'recall': 0.990625} | {'f1': 0.9906241759529646} | |
|
| No log | 2.0 | 320 | 0.0002 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} | |
|
| No log | 3.0 | 480 | 0.0001 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} | |
|
| 0.0367 | 4.0 | 640 | 0.0001 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|