--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-scam-classifier-v1.6 results: [] --- # bert-scam-classifier-v1.6 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: {'accuracy': 1.0} - Precision: {'precision': 1.0} - Recall: {'recall': 1.0} - F1: {'f1': 1.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:-------------------------------:|:--------------------:|:--------------------------:| | No log | 1.0 | 160 | 0.0325 | {'accuracy': 0.990625} | {'precision': 0.99079754601227} | {'recall': 0.990625} | {'f1': 0.9906241759529646} | | No log | 2.0 | 320 | 0.0002 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} | | No log | 3.0 | 480 | 0.0001 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} | | 0.0367 | 4.0 | 640 | 0.0001 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1