BothBosu's picture
End of training
d7e1fa1 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bert-scam-classifier-v1.6
    results: []

bert-scam-classifier-v1.6

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: {'accuracy': 1.0}
  • Precision: {'precision': 1.0}
  • Recall: {'recall': 1.0}
  • F1: {'f1': 1.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 160 0.0325 {'accuracy': 0.990625} {'precision': 0.99079754601227} {'recall': 0.990625} {'f1': 0.9906241759529646}
No log 2.0 320 0.0002 {'accuracy': 1.0} {'precision': 1.0} {'recall': 1.0} {'f1': 1.0}
No log 3.0 480 0.0001 {'accuracy': 1.0} {'precision': 1.0} {'recall': 1.0} {'f1': 1.0}
0.0367 4.0 640 0.0001 {'accuracy': 1.0} {'precision': 1.0} {'recall': 1.0} {'f1': 1.0}

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1