metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-scam-classifier-v1.6
results: []
bert-scam-classifier-v1.6
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: {'accuracy': 1.0}
- Precision: {'precision': 1.0}
- Recall: {'recall': 1.0}
- F1: {'f1': 1.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 160 | 0.0325 | {'accuracy': 0.990625} | {'precision': 0.99079754601227} | {'recall': 0.990625} | {'f1': 0.9906241759529646} |
No log | 2.0 | 320 | 0.0002 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} |
No log | 3.0 | 480 | 0.0001 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} |
0.0367 | 4.0 | 640 | 0.0001 | {'accuracy': 1.0} | {'precision': 1.0} | {'recall': 1.0} | {'f1': 1.0} |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1