|
---
|
|
tags:
|
|
- text-to-image
|
|
- stable-diffusion
|
|
license: apache-2.0
|
|
language:
|
|
- en
|
|
library_name: diffusers
|
|
---
|
|
|
|
# EasyRef Model Card
|
|
|
|
<div align="center">
|
|
|
|
[**Project Page**](https://easyref-gen.github.io/) **|** [**Paper**](https://arxiv.org/pdf/2412.09618) **|** [**Code**](https://github.com/TempleX98/EasyRef) **|** [🤗 **Demo**](https://huggingface.co/spaces/zongzhuofan/EasyRef)
|
|
|
|
|
|
</div>
|
|
|
|
## Introduction
|
|
|
|
EasyRef is capable of modeling the consistent visual elements of various group image references with a single generalist multimodal LLM in a zero-shot setting.
|
|
|
|
<div align="center">
|
|
<img src='examples/framework.png'>
|
|
</div>
|
|
|
|
## Demos
|
|
More visualization examples are available in our [project page](https://easyref-gen.github.io/).
|
|
### Style, Identity, and Character Preservation
|
|
<img src='examples/teaser.png'>
|
|
|
|
### Comparison with IP-Adapter
|
|
|
|
<img src='examples/qualitative.png'>
|
|
|
|
### Compatibility with ControlNet
|
|
|
|
<img src='examples/controlnet.png'>
|
|
|
|
## Inference
|
|
We provide the inference code of EasyRef with SDXL in [**easyref_demo**](https://github.com/TempleX98/EasyRef/blob/main/easyref_demo.ipynb).
|
|
|
|
### Usage Tips
|
|
- EasyRef performs best when provided with multiple reference images (more than 2).
|
|
- To ensure better identity preservation, we strongly recommend that users upload multiple square face images, ensuring the face occupies the majority of each image.
|
|
- Using multimodal prompts (both reference images and non-empty text prompt) can achieve better results.
|
|
- We set `scale=1.0` by default. Lowering the `scale` value leads to more diverse but less consistent generation results.
|
|
|
|
## Cite
|
|
If you find EasyRef useful for your research and applications, please cite us using this BibTeX:
|
|
|
|
```bibtex
|
|
@article{easyref,
|
|
title={EasyRef: Omni-Generalized Group Image Reference for Diffusion Models via Multimodal LLM},
|
|
author={Zong, Zhuofan and Jiang, Dongzhi and Ma, Bingqi and Song, Guanglu and Shao, Hao and Shen, Dazhong and Liu, Yu and Li, Hongsheng},
|
|
journal={arXiv preprint arXiv:2412.09618},
|
|
year={2024}
|
|
}
|
|
``` |