metadata
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- f1
model-index:
- name: bert-base-finetuned-ynat
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: klue
type: klue
args: ynat
metrics:
- name: F1
type: f1
value: 0.8669116640755216
bert-base-finetuned-ynat
This model is a fine-tuned version of klue/bert-base on the klue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3710
- F1: 0.8669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 179 | 0.4223 | 0.8549 |
No log | 2.0 | 358 | 0.3710 | 0.8669 |
0.2576 | 3.0 | 537 | 0.3891 | 0.8631 |
0.2576 | 4.0 | 716 | 0.3968 | 0.8612 |
0.2576 | 5.0 | 895 | 0.4044 | 0.8617 |
Framework versions
- Transformers 4.10.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3