--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: ynat metrics: - name: F1 type: f1 value: 0.8669116640755216 --- # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3710 - F1: 0.8669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4223 | 0.8549 | | No log | 2.0 | 358 | 0.3710 | 0.8669 | | 0.2576 | 3.0 | 537 | 0.3891 | 0.8631 | | 0.2576 | 4.0 | 716 | 0.3968 | 0.8612 | | 0.2576 | 5.0 | 895 | 0.4044 | 0.8617 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3