|
---
|
|
language:
|
|
- en
|
|
library_name: sentence-transformers
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- loss:SoftmaxLoss
|
|
- loss:CosineSimilarityLoss
|
|
base_model: google-bert/bert-base-uncased
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
- pearson_manhattan
|
|
- spearman_manhattan
|
|
- pearson_euclidean
|
|
- spearman_euclidean
|
|
- pearson_dot
|
|
- spearman_dot
|
|
- pearson_max
|
|
- spearman_max
|
|
widget:
|
|
- source_sentence: the guy is dead
|
|
sentences:
|
|
- The dog is dead.
|
|
- Men are sitting in the park.
|
|
- People are outside.
|
|
- source_sentence: Women are running.
|
|
sentences:
|
|
- Two women are running.
|
|
- A animated airplane is landing.
|
|
- The man sang and played his guitar.
|
|
- source_sentence: The gate is yellow.
|
|
sentences:
|
|
- The gate is blue.
|
|
- The cook is kneading the flour.
|
|
- A woman puts flour on a piece of meat.
|
|
- source_sentence: A parrot is talking.
|
|
sentences:
|
|
- A man is singing.
|
|
- Two men are standing in a room.
|
|
- Three dogs playing in the snow.
|
|
- source_sentence: the guy is paid
|
|
sentences:
|
|
- A man is receiving a contract.
|
|
- A man is racing on his bike.
|
|
- a dog chases a cat
|
|
pipeline_tag: sentence-similarity
|
|
co2_eq_emissions:
|
|
emissions: 6.489379533908795
|
|
energy_consumed: 0.01669499908389665
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
ram_total_size: 31.777088165283203
|
|
hours_used: 0.097
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
model-index:
|
|
- name: SentenceTransformer based on google-bert/bert-base-uncased
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: sts dev
|
|
type: sts-dev
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.8287682657838144
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.8350670289838767
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.796834648877542
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.8041000103101458
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.7968015917572032
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.803879972820206
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.7572392072098838
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.7696731029709327
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.8287682657838144
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.8350670289838767
|
|
name: Spearman Max
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: sts test
|
|
type: sts-test
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.8014245911006761
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.8049359058371248
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.7934883900951029
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.793480619733962
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.7940198430253176
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.7942686805824551
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.698878713916111
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.6967434595564439
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.8014245911006761
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.8049359058371248
|
|
name: Spearman Max
|
|
---
|
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) and [sts](https://huggingface.co/datasets/sentence-transformers/stsb) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Datasets:**
|
|
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
|
- [sts](https://huggingface.co/datasets/sentence-transformers/stsb)
|
|
- **Language:** en
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("tomaarsen/bert-base-uncased-multi-task")
|
|
# Run inference
|
|
sentences = [
|
|
'the guy is paid',
|
|
'A man is receiving a contract.',
|
|
'A man is racing on his bike.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
* Dataset: `sts-dev`
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| pearson_cosine | 0.8288 |
|
|
| **spearman_cosine** | **0.8351** |
|
|
| pearson_manhattan | 0.7968 |
|
|
| spearman_manhattan | 0.8041 |
|
|
| pearson_euclidean | 0.7968 |
|
|
| spearman_euclidean | 0.8039 |
|
|
| pearson_dot | 0.7572 |
|
|
| spearman_dot | 0.7697 |
|
|
| pearson_max | 0.8288 |
|
|
| spearman_max | 0.8351 |
|
|
|
|
#### Semantic Similarity
|
|
* Dataset: `sts-test`
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| pearson_cosine | 0.8014 |
|
|
| **spearman_cosine** | **0.8049** |
|
|
| pearson_manhattan | 0.7935 |
|
|
| spearman_manhattan | 0.7935 |
|
|
| pearson_euclidean | 0.794 |
|
|
| spearman_euclidean | 0.7943 |
|
|
| pearson_dot | 0.6989 |
|
|
| spearman_dot | 0.6967 |
|
|
| pearson_max | 0.8014 |
|
|
| spearman_max | 0.8049 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Datasets
|
|
|
|
#### all-nli
|
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
|
|
* Size: 942,069 training samples
|
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | premise | hypothesis | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
|
|
* Samples:
|
|
| premise | hypothesis | label |
|
|
|:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
|
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
|
|
|
|
#### sts
|
|
|
|
* Dataset: [sts](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
|
* Size: 5,749 training samples
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence1 | sentence2 | score |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence1 | sentence2 | score |
|
|
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
|
|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
|
|
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
|
|
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
|
}
|
|
```
|
|
|
|
### Evaluation Datasets
|
|
|
|
#### all-nli
|
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
|
|
* Size: 1,000 evaluation samples
|
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | premise | hypothesis | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
|
|
* Samples:
|
|
| premise | hypothesis | label |
|
|
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
|
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
|
|
|
|
#### sts
|
|
|
|
* Dataset: [sts](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
|
* Size: 1,500 evaluation samples
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence1 | sentence2 | score |
|
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence1 | sentence2 | score |
|
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
|
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
|
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
|
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: False
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: None
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | sts loss | all-nli loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
|
|:------:|:----:|:-------------:|:--------:|:------------:|:-----------------------:|:------------------------:|
|
|
| 0.1389 | 100 | 0.5961 | 0.0470 | 1.1005 | 0.8096 | - |
|
|
| 0.2778 | 200 | 0.5408 | 0.0354 | 0.9687 | 0.8229 | - |
|
|
| 0.4167 | 300 | 0.5185 | 0.0373 | 0.9398 | 0.8265 | - |
|
|
| 0.5556 | 400 | 0.4978 | 0.0368 | 0.9304 | 0.8200 | - |
|
|
| 0.6944 | 500 | 0.5026 | 0.0347 | 0.9044 | 0.8234 | - |
|
|
| 0.8333 | 600 | 0.4702 | 0.0326 | 0.8727 | 0.8300 | - |
|
|
| 0.9722 | 700 | 0.4649 | 0.0328 | 0.8723 | 0.8351 | - |
|
|
| 1.0 | 720 | - | - | - | - | 0.8049 |
|
|
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 0.017 kWh
|
|
- **Carbon Emitted**: 0.006 kg of CO2
|
|
- **Hours Used**: 0.097 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.6
|
|
- Sentence Transformers: 3.0.0.dev0
|
|
- Transformers: 4.41.0.dev0
|
|
- PyTorch: 2.3.0+cu121
|
|
- Accelerate: 0.26.1
|
|
- Datasets: 2.18.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers and SoftmaxLoss
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |