tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model.
e9ee5d2 verified
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - loss:SoftmaxLoss
  - loss:CosineSimilarityLoss
base_model: google-bert/bert-base-uncased
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: the guy is dead
    sentences:
      - The dog is dead.
      - Men are sitting in the park.
      - People are outside.
  - source_sentence: Women are running.
    sentences:
      - Two women are running.
      - A animated airplane is landing.
      - The man sang and played his guitar.
  - source_sentence: The gate is yellow.
    sentences:
      - The gate is blue.
      - The cook is kneading the flour.
      - A woman puts flour on a piece of meat.
  - source_sentence: A parrot is talking.
    sentences:
      - A man is singing.
      - Two men are standing in a room.
      - Three dogs playing in the snow.
  - source_sentence: the guy is paid
    sentences:
      - A man is receiving a contract.
      - A man is racing on his bike.
      - a dog chases a cat
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 6.489379533908795
  energy_consumed: 0.01669499908389665
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.097
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer based on google-bert/bert-base-uncased
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8287682657838144
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8350670289838767
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.796834648877542
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8041000103101458
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7968015917572032
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.803879972820206
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7572392072098838
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7696731029709327
            name: Spearman Dot
          - type: pearson_max
            value: 0.8287682657838144
            name: Pearson Max
          - type: spearman_max
            value: 0.8350670289838767
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.8014245911006761
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8049359058371248
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7934883900951029
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.793480619733962
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7940198430253176
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7942686805824551
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.698878713916111
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6967434595564439
            name: Spearman Dot
          - type: pearson_max
            value: 0.8014245911006761
            name: Pearson Max
          - type: spearman_max
            value: 0.8049359058371248
            name: Spearman Max

SentenceTransformer based on google-bert/bert-base-uncased

This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the all-nli and sts datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-bert/bert-base-uncased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Datasets:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-multi-task")
# Run inference
sentences = [
    'the guy is paid',
    'A man is receiving a contract.',
    'A man is racing on his bike.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8288
spearman_cosine 0.8351
pearson_manhattan 0.7968
spearman_manhattan 0.8041
pearson_euclidean 0.7968
spearman_euclidean 0.8039
pearson_dot 0.7572
spearman_dot 0.7697
pearson_max 0.8288
spearman_max 0.8351

Semantic Similarity

Metric Value
pearson_cosine 0.8014
spearman_cosine 0.8049
pearson_manhattan 0.7935
spearman_manhattan 0.7935
pearson_euclidean 0.794
spearman_euclidean 0.7943
pearson_dot 0.6989
spearman_dot 0.6967
pearson_max 0.8014
spearman_max 0.8049

Training Details

Training Datasets

all-nli

  • Dataset: all-nli at cc6c526
  • Size: 942,069 training samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 17.38 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 10.7 tokens
    • max: 31 tokens
    • 0: ~33.40%
    • 1: ~33.30%
    • 2: ~33.30%
  • Samples:
    premise hypothesis label
    A person on a horse jumps over a broken down airplane. A person is training his horse for a competition. 1
    A person on a horse jumps over a broken down airplane. A person is at a diner, ordering an omelette. 2
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. 0
  • Loss: SoftmaxLoss

sts

  • Dataset: sts at ab7a5ac
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 10.0 tokens
    • max: 28 tokens
    • min: 5 tokens
    • mean: 9.95 tokens
    • max: 25 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A plane is taking off. An air plane is taking off. 1.0
    A man is playing a large flute. A man is playing a flute. 0.76
    A man is spreading shreded cheese on a pizza. A man is spreading shredded cheese on an uncooked pizza. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Datasets

all-nli

  • Dataset: all-nli at cc6c526
  • Size: 1,000 evaluation samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 18.44 tokens
    • max: 57 tokens
    • min: 5 tokens
    • mean: 10.57 tokens
    • max: 25 tokens
    • 0: ~33.10%
    • 1: ~33.30%
    • 2: ~33.60%
  • Samples:
    premise hypothesis label
    Two women are embracing while holding to go packages. The sisters are hugging goodbye while holding to go packages after just eating lunch. 1
    Two women are embracing while holding to go packages. Two woman are holding packages. 0
    Two women are embracing while holding to go packages. The men are fighting outside a deli. 2
  • Loss: SoftmaxLoss

sts

  • Dataset: sts at ab7a5ac
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 15.1 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 15.11 tokens
    • max: 53 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: False
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: None
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss sts loss all-nli loss sts-dev_spearman_cosine sts-test_spearman_cosine
0.1389 100 0.5961 0.0470 1.1005 0.8096 -
0.2778 200 0.5408 0.0354 0.9687 0.8229 -
0.4167 300 0.5185 0.0373 0.9398 0.8265 -
0.5556 400 0.4978 0.0368 0.9304 0.8200 -
0.6944 500 0.5026 0.0347 0.9044 0.8234 -
0.8333 600 0.4702 0.0326 0.8727 0.8300 -
0.9722 700 0.4649 0.0328 0.8723 0.8351 -
1.0 720 - - - - 0.8049

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.017 kWh
  • Carbon Emitted: 0.006 kg of CO2
  • Hours Used: 0.097 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.0.0.dev0
  • Transformers: 4.41.0.dev0
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.18.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}