File size: 27,598 Bytes
1a2c8b5
 
248a53d
1a2c8b5
 
 
 
 
 
 
 
 
 
a110291
1a2c8b5
248a53d
 
1a2c8b5
 
 
 
 
 
 
 
 
 
 
 
ba508b5
8623f65
ba508b5
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8623f65
ba508b5
8623f65
ba508b5
8623f65
 
 
 
 
 
 
 
 
 
 
 
 
248a53d
ba508b5
248a53d
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8623f65
ba508b5
8623f65
ba508b5
8623f65
 
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c8b5
248a53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba508b5
 
248a53d
 
 
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248a53d
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c83ed
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
248a53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248a53d
 
ba508b5
 
 
 
 
 
 
 
248a53d
 
 
 
 
ba508b5
 
 
248a53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba508b5
248a53d
 
ba508b5
248a53d
 
 
 
 
 
 
 
 
 
 
ba508b5
248a53d
 
 
ba508b5
248a53d
 
 
ba508b5
248a53d
 
 
 
 
 
 
 
 
 
 
 
 
ba508b5
76c83ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248a53d
76c83ed
 
 
 
 
248a53d
 
76c83ed
 
 
 
 
 
 
248a53d
 
 
 
 
 
 
76c83ed
248a53d
76c83ed
 
 
 
 
248a53d
 
 
76c83ed
ba508b5
248a53d
 
 
 
 
 
 
 
8623f65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor
# suppress partial model loading warning
logging.set_verbosity_error()

import os
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import argparse
from torchvision.io import write_video
from pathlib import Path
from utils import *
import torchvision.transforms as T
import cv2
import numpy as np


def get_timesteps(scheduler, num_inference_steps, strength, device):
    # get the original timestep using init_timestep
    init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

    t_start = max(num_inference_steps - init_timestep, 0)
    timesteps = scheduler.timesteps[t_start:]

    return timesteps, num_inference_steps - t_start


class Preprocess(nn.Module):
    def __init__(self, device, opt, vae, tokenizer, text_encoder, unet,scheduler, hf_key=None):
        super().__init__()

        self.device = device
        self.sd_version = opt["sd_version"]
        self.use_depth = False
        self.config = opt

        print(f'[INFO] loading stable diffusion...')
        if hf_key is not None:
            print(f'[INFO] using hugging face custom model key: {hf_key}')
            model_key = hf_key
        elif self.sd_version == '2.1':
            model_key = "stabilityai/stable-diffusion-2-1-base"
        elif self.sd_version == '2.0':
            model_key = "stabilityai/stable-diffusion-2-base"
        elif self.sd_version == '1.5' or self.sd_version == 'ControlNet':
            model_key = "runwayml/stable-diffusion-v1-5"
        elif self.sd_version == 'depth':
            model_key = "stabilityai/stable-diffusion-2-depth"
        else:
            raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
        
        self.model_key = model_key
        
        # Create model
        # self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
        #                                          torch_dtype=torch.float16).to(self.device)
        # self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
        # self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
        #                                                   torch_dtype=torch.float16).to(self.device)
        # self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
        #                                            torch_dtype=torch.float16).to(self.device)
        
        self.vae = vae
        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        self.unet = unet
        self.scheduler=scheduler
        
        self.total_inverted_latents = {}
        self.noise_total = None # will contain all zs if inversion == 'ddpm', var name chosen to match the save path of zs used in pr      https://github.com/omerbt/TokenFlow/pull/24/files#
        
        self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
        print("self.frames", self.frames.shape)
        print("self.latents", self.latents.shape)
        
        
        if self.sd_version == 'ControlNet':
            from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(self.device)
            control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
            ).to(self.device)
            self.unet = control_pipe.unet
            self.controlnet = control_pipe.controlnet
            self.canny_cond = self.get_canny_cond()
        elif self.sd_version == 'depth':
            self.depth_maps = self.prepare_depth_maps()
        self.scheduler = scheduler
        
        self.unet.enable_xformers_memory_efficient_attention()
        print(f'[INFO] loaded stable diffusion!')
    
    
    @torch.no_grad()   
    def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
        depth_maps = []
        midas = torch.hub.load("intel-isl/MiDaS", model_type)
        midas.to(device)
        midas.eval()

        midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

        if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
            transform = midas_transforms.dpt_transform
        else:
            transform = midas_transforms.small_transform

        for i in range(len(self.paths)):
            img = cv2.imread(self.paths[i])
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

            latent_h = img.shape[0] // 8
            latent_w = img.shape[1] // 8
            
            input_batch = transform(img).to(device)
            prediction = midas(input_batch)

            depth_map = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=(latent_h, latent_w),
                mode="bicubic",
                align_corners=False,
            )
            depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
            depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
            depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
            depth_maps.append(depth_map)

        return torch.cat(depth_maps).to(self.device).to(torch.float16)
    
    @torch.no_grad()
    def get_canny_cond(self):
        canny_cond = []
        for image in self.frames.cpu().permute(0, 2, 3, 1):
            image = np.uint8(np.array(255 * image))
            low_threshold = 100
            high_threshold = 200

            image = cv2.Canny(image, low_threshold, high_threshold)
            image = image[:, :, None]
            image = np.concatenate([image, image, image], axis=2)
            image = torch.from_numpy((image.astype(np.float32) / 255.0))
            canny_cond.append(image)
        canny_cond = torch.stack(canny_cond).permute(0, 3, 1, 2).to(self.device).to(torch.float16)
        return canny_cond
    
    def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
        down_block_res_samples, mid_block_res_sample = self.controlnet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            controlnet_cond=controlnet_cond,
            conditioning_scale=1,
            return_dict=False,
        )
        
        # apply the denoising network
        noise_pred = self.unet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            cross_attention_kwargs={},
            down_block_additional_residuals=down_block_res_samples,
            mid_block_additional_residual=mid_block_res_sample,
            return_dict=False,
        )[0]
        return noise_pred
    
    @torch.no_grad()
    def encode_text(self, prompts, device=None):
        if device is None:
            device = self.device
        text_inputs = self.tokenizer(
            prompts,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids

        if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
            removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:])
            print(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
        text_embeddings = self.text_encoder(text_input_ids.to(device))[0]

        return text_embeddings

    @torch.no_grad()
    def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
        text_embeddings = self.encode_text(prompt, device=device)
        uncond_embeddings = self.encode_text(negative_prompt, device=device)

        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        return text_embeddings

    @torch.no_grad()
    def decode_latents(self, latents):
        decoded = []
        batch_size = 8
        for b in range(0, latents.shape[0], batch_size):
                latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
                imgs = self.vae.decode(latents_batch).sample
                imgs = (imgs / 2 + 0.5).clamp(0, 1)
                decoded.append(imgs)
        return torch.cat(decoded)

    @torch.no_grad()
    def encode_imgs(self, imgs, batch_size=10, deterministic=True):
        imgs = 2 * imgs - 1
        latents = []
        for i in range(0, len(imgs), batch_size):
            posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
            latent = posterior.mean if deterministic else posterior.sample()
            latents.append(latent * self.vae.config.scaling_factor)
        latents = torch.cat(latents)
        return latents

    def get_data(self, frames_path, n_frames):
        
        # load frames
        if not self.config["frames"]:
            paths =  [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
            print(paths)
            if not os.path.exists(paths[0]):
                paths = [f"{frames_path}/%05d.jpg" % i for i in range(n_frames)]
            self.paths = paths
            frames = [Image.open(path).convert('RGB') for path in paths]
            if frames[0].size[0] == frames[0].size[1]:
                frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
        else:
            frames = self.config["frames"][:n_frames]
        frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
        # encode to latents
        latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
        print("frames", frames.shape)
        print("latents", latents.shape)
        
        if not self.config["frames"]:
            return paths, frames, latents
        else:
            return None, frames, latents

    @torch.no_grad()
    def ddim_inversion(self, cond, latent_frames, save_path, batch_size, save_latents=True, timesteps_to_save=None):
        timesteps = reversed(self.scheduler.timesteps)
        timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
        
        return_inverted_latents = self.config["frames"] is not None
        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, latent_frames.shape[0], int(batch_size)):
                x_batch = latent_frames[b:b + batch_size]
                model_input = x_batch
                cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
                if self.sd_version == 'depth':
                    depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
                    model_input = torch.cat([x_batch, depth_maps],dim=1)
                                                                    
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                alpha_prod_t_prev = (
                    self.scheduler.alphas_cumprod[timesteps[i - 1]]
                    if i > 0 else self.scheduler.final_alpha_cumprod
                )

                mu = alpha_prod_t ** 0.5
                mu_prev = alpha_prod_t_prev ** 0.5
                sigma = (1 - alpha_prod_t) ** 0.5
                sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
                    else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
                pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
                latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
            
            if return_inverted_latents and t in timesteps_to_save:
                self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
    
            if save_latents and t in timesteps_to_save:
                torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
        
        if save_latents:
            torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
        if return_inverted_latents:
            self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()

        return latent_frames
    
    @torch.no_grad()
    def ddpm_inversion(self, cond, 
                       latent_frames, 
                       batch_size, 
                       num_inversion_steps,
                       save_path=None,
                       save_latents=True, 
                       eta: float = 1.0, 
                       skip_steps=20):
        timesteps = self.scheduler.timesteps
        return_inverted_latents = self.config["frames"] is not None

        variance_noise_shape = (
            num_inversion_steps,
            *latent_frames.shape)
        x0 = latent_frames

        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
        xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)

        for t in reversed(timesteps):
            idx = t_to_idx[int(t)]
            for b in range(0, x0.shape[0], batch_size):
                x_batch = x0[b:b + batch_size]

                noise = randn_tensor(shape=x_batch.shape, device=self.device, dtype=x0.dtype)
                xts[idx, b:b + batch_size] = self.scheduler.add_noise(x_batch, noise, t)

        xts = torch.cat([xts, x0.unsqueeze(0)], dim=0)

        zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)

        for t in tqdm(timesteps):
            idx = t_to_idx[int(t)]
            # 1. predict noise residual
            for b in range(0, x0.shape[0], batch_size):
                xt = xts[idx, b:b + batch_size]

                cond_batch = cond.repeat(xt.shape[0], 1, 1)
                noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=cond_batch).sample

                xtm1 = xts[idx + 1, b:b + batch_size]
                z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, eta)
                zs[idx, b:b + batch_size] = z

                # correction to avoid error accumulation
                xts[idx + 1, b:b + batch_size] = xtm1_corrected

            if save_latents:
                torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
            
            if return_inverted_latents:
                self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()

        if save_path:
            torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
            torch.save(zs, os.path.join(save_path, 'latents', f'noise_total.pt'))
        
        if return_inverted_latents:
                self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()
                self.noise_total = zs.clone()

        return xts[skip_steps].expand(latent_frames.shape[0], -1, -1, -1), zs
    
    def prepare_extra_step_kwargs(self, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        return extra_step_kwargs

    @torch.no_grad()
    def ddpm_sample(self, init_latents, cond, batch_size, num_inversion_steps, skip_steps, eta, zs_all,
                    guidance_scale=0):
        use_ddpm = True
        do_classifier_free_guidance = guidance_scale > 1.0

        total_latents = init_latents
        self.scheduler.set_timesteps(num_inversion_steps, device=device)
        timesteps = self.scheduler.timesteps
        zs_total = zs_all[skip_steps:]

        if use_ddpm:
            t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs_total.shape[0]:])}
            timesteps = timesteps[-zs_total.shape[0]:]

        num_warmup_steps = len(timesteps) - num_inversion_steps * self.scheduler.order
        extra_step_kwargs = self.prepare_extra_step_kwargs(eta)

        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, total_latents.shape[0], batch_size):
                latents = total_latents[b:b + batch_size]
                if do_classifier_free_guidance:
                    latent_model_input = torch.cat([latents] * 2)
                else:
                    latent_model_input = latents
                cond_batch = cond.repeat(latents.shape[0], 1, 1)

                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=cond_batch,
                    return_dict=False,
                )[0]

                if do_classifier_free_guidance:
                    noise_pred_out = noise_pred.chunk(2)  # [b,4, 64, 64]
                    noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]

                    # default text guidance
                    noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond)

                    noise_pred = noise_pred_uncond + noise_guidance

                idx = t_to_idx[int(t)]
                zs = zs_total[idx, b:b + batch_size]
                latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs,
                                              **extra_step_kwargs).prev_sample
                total_latents[b:b + batch_size] = latents
        return total_latents

    @torch.no_grad()
    def ddim_sample(self, x, cond, batch_size):
        timesteps = self.scheduler.timesteps
        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, x.shape[0], batch_size):
                x_batch = x[b:b + batch_size]
                model_input = x_batch
                cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
                
                if self.sd_version == 'depth':
                    depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
                    model_input = torch.cat([x_batch, depth_maps],dim=1)
                
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                alpha_prod_t_prev = (
                    self.scheduler.alphas_cumprod[timesteps[i + 1]]
                    if i < len(timesteps) - 1
                    else self.scheduler.final_alpha_cumprod
                )
                mu = alpha_prod_t ** 0.5
                sigma = (1 - alpha_prod_t) ** 0.5
                mu_prev = alpha_prod_t_prev ** 0.5
                sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
                    else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))

                pred_x0 = (x_batch - sigma * eps) / mu
                x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
        return x
    


    @torch.no_grad()
    def extract_latents(self, 
                        num_steps,
                        save_path,
                        batch_size,
                        timesteps_to_save,
                        inversion_prompt='',
                        skip_steps=20,
                        inversion_type='ddim', 
                        eta=1.0, 
                        reconstruction=False):
        
        self.scheduler.set_timesteps(num_steps)
        cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
        latent_frames = self.latents
        
        if inversion_type == 'ddim':
            inverted_x= self.ddim_inversion(cond,
                                             latent_frames,
                                             save_path,
                                             batch_size=batch_size,
                                             save_latents=True if save_path else False,
                                             timesteps_to_save=timesteps_to_save)

            if reconstruction:
                latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)

                rgb_reconstruction = self.decode_latents(latent_reconstruction)
                return (self.frames, self.latents, self.total_inverted_latents), rgb_reconstruction

            else:
                return (self.frames, self.latents, self.total_inverted_latents), None
        
        elif inversion_type == 'ddpm':
            inverted_x, zs = self.ddpm_inversion(cond,
                                                 latent_frames,
                                                 save_path= save_path,
                                                 batch_size=batch_size,
                                                 save_latents=True if save_path else False,
                                                 num_inversion_steps=num_steps,
                                                 eta=eta,
                                                 skip_steps=skip_steps)
        
            cond = self.encode_text(inversion_prompt)
            if reconstruction:
                latent_reconstruction = self.ddpm_sample(init_latents=inverted_x,
                                                         cond=cond, batch_size=batch_size,
                                                         num_inversion_steps=num_steps, skip_steps=skip_steps,
                                                         eta=eta, zs_all=zs)
                rgb_reconstruction = self.decode_latents(latent_reconstruction)
                return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), rgb_reconstruction
            else:
                return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), None

        else:
            raise NotImplementedError()

def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps

    # 2. compute alphas, betas
    alpha_prod_t = scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = (
        scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
    )

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)

    # 4. Clip "predicted x_0"
    if scheduler.config.clip_sample:
        pred_original_sample = torch.clamp(pred_original_sample, -1, 1)

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    variance = scheduler._get_variance(timestep, prev_timestep)
    std_dev_t = eta * variance ** (0.5)

    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** (0.5) * noise_pred

    # modifed so that updated xtm1 is returned as well (to avoid error accumulation)
    mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)

    return noise, mu_xt + (eta * variance ** 0.5) * noise

def prep(opt):
    # timesteps to save
    if opt["sd_version"] == '2.1':
        model_key = "stabilityai/stable-diffusion-2-1-base"
    elif opt["sd_version"] == '2.0':
        model_key = "stabilityai/stable-diffusion-2-base"
    elif opt["sd_version"] == '1.5' or opt["sd_version"] == 'ControlNet':
        model_key = "runwayml/stable-diffusion-v1-5"
    elif opt["sd_version"] == 'depth':
        model_key = "stabilityai/stable-diffusion-2-depth"
    toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
    toy_scheduler.set_timesteps(opt["save_steps"])
    timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=opt["save_steps"],
                                                           strength=1.0,
                                                           device=device)

    seed_everything(opt["seed"])
    if not opt["frames"]: # original non demo setting
        save_path = os.path.join(opt["save_dir"],
                                 f'inversion_{opt[inversion]}',
                                 f'sd_{opt["sd_version"]}',
                                 Path(opt["data_path"]).stem,
                                 f'steps_{opt["steps"]}',
                                 f'nframes_{opt["n_frames"]}') 
        os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
        if opt[inversion] == 'ddpm':
            os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
        add_dict_to_yaml_file(os.path.join(opt["save_dir"], 'inversion_prompts.yaml'), Path(opt["data_path"]).stem, opt["inversion_prompt"])    
        # save inversion prompt in a txt file
        with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
            f.write(opt["inversion_prompt"])
    else:
        save_path = None
    
    model = Preprocess(device, 
                       config,
                      vae=vae,
                      text_encoder=text_encoder,
                      scheduler=scheduler,
                      tokenizer=tokenizer,
                      unet=unet)
  
    frames_and_latents, rgb_reconstruction = model.extract_latents(
                                         num_steps=model.config["steps"],
                                         save_path=save_path,
                                         batch_size=model.config["batch_size"],
                                         timesteps_to_save=timesteps_to_save,
                                         inversion_prompt=model.config["inversion_prompt"],
                                         inversion_type=model.config[inversion],
                                         skip_steps=model.config[skip_steps],
                                         reconstruction=model.config[reconstruct]
    )

    if model.config[inversion] == 'ddpm':
        frames, latents, total_inverted_latents, zs = frames_and_latents
        return frames, latents, total_inverted_latents, zs, rgb_reconstruction
    else:
        frames, latents, total_inverted_latents = frames_and_latents
        return frames, latents, total_inverted_latents, rgb_reconstruction