Linoy Tsaban commited on
Commit
76c83ed
·
1 Parent(s): 5eb8981

Update preprocess_utils.py

Browse files
Files changed (1) hide show
  1. preprocess_utils.py +73 -2
preprocess_utils.py CHANGED
@@ -219,7 +219,7 @@ class Preprocess(nn.Module):
219
 
220
  return_inverted_latents = self.config["frames"] is not None
221
  for i, t in enumerate(tqdm(timesteps)):
222
- for b in range(0, latent_frames.shape[0], batch_size):
223
  x_batch = latent_frames[b:b + batch_size]
224
  model_input = x_batch
225
  cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
@@ -320,5 +320,76 @@ class Preprocess(nn.Module):
320
  return self.frames, self.latents, self.total_inverted_latents, None
321
 
322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
 
324
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
 
220
  return_inverted_latents = self.config["frames"] is not None
221
  for i, t in enumerate(tqdm(timesteps)):
222
+ for b in range(0, latent_frames.shape[0], int(batch_size)):
223
  x_batch = latent_frames[b:b + batch_size]
224
  model_input = x_batch
225
  cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
 
320
  return self.frames, self.latents, self.total_inverted_latents, None
321
 
322
 
323
+ def prep(opt):
324
+ # timesteps to save
325
+ if opt["sd_version"] == '2.1':
326
+ model_key = "stabilityai/stable-diffusion-2-1-base"
327
+ elif opt["sd_version"] == '2.0':
328
+ model_key = "stabilityai/stable-diffusion-2-base"
329
+ elif opt["sd_version"] == '1.5' or opt["sd_version"] == 'ControlNet':
330
+ model_key = "runwayml/stable-diffusion-v1-5"
331
+ elif opt["sd_version"] == 'depth':
332
+ model_key = "stabilityai/stable-diffusion-2-depth"
333
+ toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
334
+ toy_scheduler.set_timesteps(opt["save_steps"])
335
+ timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=opt["save_steps"],
336
+ strength=1.0,
337
+ device=device)
338
+
339
+ seed_everything(opt["seed"])
340
+ if not opt["frames"]: # original non demo setting
341
+ save_path = os.path.join(opt["save_dir"],
342
+ f'sd_{opt["sd_version"]}',
343
+ Path(opt["data_path"]).stem,
344
+ f'steps_{opt["steps"]}',
345
+ f'nframes_{opt["n_frames"]}')
346
+ os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
347
+ add_dict_to_yaml_file(os.path.join(opt["save_dir"], 'inversion_prompts.yaml'), Path(opt["data_path"]).stem, opt["inversion_prompt"])
348
+ # save inversion prompt in a txt file
349
+ with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
350
+ f.write(opt["inversion_prompt"])
351
+ else:
352
+ save_path = None
353
+
354
+ model = Preprocess(device, opt)
355
+
356
+ frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents(
357
+ num_steps=model.config["steps"],
358
+ save_path=save_path,
359
+ batch_size=model.config["batch_size"],
360
+ timesteps_to_save=timesteps_to_save,
361
+ inversion_prompt=model.config["inversion_prompt"],
362
+ )
363
 
364
+
365
+ return frames, latents, total_inverted_latents, rgb_reconstruction
366
+ # if not os.path.isdir(os.path.join(save_path, f'frames')):
367
+ # os.mkdir(os.path.join(save_path, f'frames'))
368
+ # for i, frame in enumerate(recon_frames):
369
+ # T.ToPILImage()(frame).save(os.path.join(save_path, f'frames', f'{i:05d}.png'))
370
+ # frames = (recon_frames * 255).to(torch.uint8).cpu().permute(0, 2, 3, 1)
371
+ # write_video(os.path.join(save_path, f'inverted.mp4'), frames, fps=10)
372
+
373
+
374
+ # if __name__ == "__main__":
375
+ # device = 'cuda'
376
+ # parser = argparse.ArgumentParser()
377
+ # parser.add_argument('--data_path', type=str,
378
+ # default='data/woman-running.mp4')
379
+ # parser.add_argument('--H', type=int, default=512,
380
+ # help='for non-square videos, we recommand using 672 x 384 or 384 x 672, aspect ratio 1.75')
381
+ # parser.add_argument('--W', type=int, default=512,
382
+ # help='for non-square videos, we recommand using 672 x 384 or 384 x 672, aspect ratio 1.75')
383
+ # parser.add_argument('--save_dir', type=str, default='latents')
384
+ # parser.add_argument('--sd_version', type=str, default='2.1', choices=['1.5', '2.0', '2.1', 'ControlNet', 'depth'],
385
+ # help="stable diffusion version")
386
+ # parser.add_argument('--steps', type=int, default=500)
387
+ # parser.add_argument('--batch_size', type=int, default=40)
388
+ # parser.add_argument('--save_steps', type=int, default=50)
389
+ # parser.add_argument('--n_frames', type=int, default=40)
390
+ # parser.add_argument('--inversion_prompt', type=str, default='a woman running')
391
+ # opt = parser.parse_args()
392
+ # video_path = opt.data_path
393
+ # save_video_frames(video_path, img_size=(opt.H, opt.W))
394
+ # opt.data_path = os.path.join('data', Path(video_path).stem)
395
+ # prep(opt)