Linoy Tsaban commited on
Commit
248a53d
·
verified ·
1 Parent(s): e24d40d

Update preprocess_utils.py

Browse files
Files changed (1) hide show
  1. preprocess_utils.py +262 -28
preprocess_utils.py CHANGED
@@ -1,5 +1,6 @@
1
  from transformers import CLIPTextModel, CLIPTokenizer, logging
2
  from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
 
3
  # suppress partial model loading warning
4
  logging.set_verbosity_error()
5
 
@@ -12,6 +13,8 @@ from torchvision.io import write_video
12
  from pathlib import Path
13
  from utils import *
14
  import torchvision.transforms as T
 
 
15
 
16
 
17
  def get_timesteps(scheduler, num_inference_steps, strength, device):
@@ -64,7 +67,9 @@ class Preprocess(nn.Module):
64
  self.text_encoder = text_encoder
65
  self.unet = unet
66
  self.scheduler=scheduler
 
67
  self.total_inverted_latents = {}
 
68
 
69
  self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
70
  print("self.frames", self.frames.shape)
@@ -163,14 +168,34 @@ class Preprocess(nn.Module):
163
  )[0]
164
  return noise_pred
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  @torch.no_grad()
167
  def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
168
- text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
169
- truncation=True, return_tensors='pt')
170
- text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
171
- uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
172
- return_tensors='pt')
173
- uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
174
  text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
175
  return text_embeddings
176
 
@@ -192,7 +217,7 @@ class Preprocess(nn.Module):
192
  for i in range(0, len(imgs), batch_size):
193
  posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
194
  latent = posterior.mean if deterministic else posterior.sample()
195
- latents.append(latent * 0.18215)
196
  latents = torch.cat(latents)
197
  return latents
198
 
@@ -264,6 +289,137 @@ class Preprocess(nn.Module):
264
  self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
265
 
266
  return latent_frames
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
  @torch.no_grad()
269
  def ddim_sample(self, x, cond, batch_size):
@@ -295,6 +451,8 @@ class Preprocess(nn.Module):
295
  pred_x0 = (x_batch - sigma * eps) / mu
296
  x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
297
  return x
 
 
298
 
299
  @torch.no_grad()
300
  def extract_latents(self,
@@ -303,31 +461,89 @@ class Preprocess(nn.Module):
303
  batch_size,
304
  timesteps_to_save,
305
  inversion_prompt='',
306
- reconstruct=False):
 
 
 
 
307
  self.scheduler.set_timesteps(num_steps)
308
  cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
309
  latent_frames = self.latents
310
- print("latent_frames", latent_frames.shape)
311
-
312
- inverted_x= self.ddim_inversion(cond,
313
- latent_frames,
314
- save_path,
315
- batch_size=batch_size,
316
- save_latents=True if save_path else False,
317
- timesteps_to_save=timesteps_to_save)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318
 
 
 
319
 
320
-
321
- # print("total_inverted_latents", len(total_inverted_latents.keys()))
322
-
323
- if reconstruct:
324
- latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)
 
 
 
 
 
 
325
 
326
- rgb_reconstruction = self.decode_latents(latent_reconstruction)
327
- return self.frames, self.latents, self.total_inverted_latents, rgb_reconstruction
 
328
 
329
- return self.frames, self.latents, self.total_inverted_latents, None
 
 
330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331
 
332
  def prep(opt):
333
  # timesteps to save
@@ -348,11 +564,14 @@ def prep(opt):
348
  seed_everything(opt["seed"])
349
  if not opt["frames"]: # original non demo setting
350
  save_path = os.path.join(opt["save_dir"],
 
351
  f'sd_{opt["sd_version"]}',
352
  Path(opt["data_path"]).stem,
353
  f'steps_{opt["steps"]}',
354
  f'nframes_{opt["n_frames"]}')
355
  os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
 
 
356
  add_dict_to_yaml_file(os.path.join(opt["save_dir"], 'inversion_prompts.yaml'), Path(opt["data_path"]).stem, opt["inversion_prompt"])
357
  # save inversion prompt in a txt file
358
  with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
@@ -360,16 +579,31 @@ def prep(opt):
360
  else:
361
  save_path = None
362
 
363
- model = Preprocess(device, opt)
 
 
 
 
 
 
364
 
365
- frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents(
366
  num_steps=model.config["steps"],
367
  save_path=save_path,
368
  batch_size=model.config["batch_size"],
369
  timesteps_to_save=timesteps_to_save,
370
  inversion_prompt=model.config["inversion_prompt"],
 
 
 
371
  )
372
 
373
-
374
- return frames, latents, total_inverted_latents, rgb_reconstruction
 
 
 
 
 
 
375
 
 
1
  from transformers import CLIPTextModel, CLIPTokenizer, logging
2
  from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
3
+ from diffusers.utils.torch_utils import randn_tensor
4
  # suppress partial model loading warning
5
  logging.set_verbosity_error()
6
 
 
13
  from pathlib import Path
14
  from utils import *
15
  import torchvision.transforms as T
16
+ import cv2
17
+ import numpy as np
18
 
19
 
20
  def get_timesteps(scheduler, num_inference_steps, strength, device):
 
67
  self.text_encoder = text_encoder
68
  self.unet = unet
69
  self.scheduler=scheduler
70
+
71
  self.total_inverted_latents = {}
72
+ self.noise_total = None # will contain all zs if inversion == 'ddpm', var name chosen to match the save path of zs used in pr https://github.com/omerbt/TokenFlow/pull/24/files#
73
 
74
  self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
75
  print("self.frames", self.frames.shape)
 
168
  )[0]
169
  return noise_pred
170
 
171
+ @torch.no_grad()
172
+ def encode_text(self, prompts, device=None):
173
+ if device is None:
174
+ device = self.device
175
+ text_inputs = self.tokenizer(
176
+ prompts,
177
+ padding="max_length",
178
+ max_length=self.tokenizer.model_max_length,
179
+ return_tensors="pt",
180
+ )
181
+ text_input_ids = text_inputs.input_ids
182
+
183
+ if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
184
+ removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:])
185
+ print(
186
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
187
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
188
+ )
189
+ text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
190
+ text_embeddings = self.text_encoder(text_input_ids.to(device))[0]
191
+
192
+ return text_embeddings
193
+
194
  @torch.no_grad()
195
  def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
196
+ text_embeddings = self.encode_text(prompt, device=device)
197
+ uncond_embeddings = self.encode_text(negative_prompt, device=device)
198
+
 
 
 
199
  text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
200
  return text_embeddings
201
 
 
217
  for i in range(0, len(imgs), batch_size):
218
  posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
219
  latent = posterior.mean if deterministic else posterior.sample()
220
+ latents.append(latent * self.vae.config.scaling_factor)
221
  latents = torch.cat(latents)
222
  return latents
223
 
 
289
  self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
290
 
291
  return latent_frames
292
+
293
+ @torch.no_grad()
294
+ def ddpm_inversion(self, cond,
295
+ latent_frames,
296
+ batch_size,
297
+ num_inversion_steps,
298
+ save_path=None,
299
+ save_latents=True,
300
+ eta: float = 1.0,
301
+ skip_steps=20):
302
+ timesteps = self.scheduler.timesteps
303
+ return_inverted_latents = self.config["frames"] is not None
304
+
305
+ variance_noise_shape = (
306
+ num_inversion_steps,
307
+ *latent_frames.shape)
308
+ x0 = latent_frames
309
+
310
+ t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
311
+ xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)
312
+
313
+ for t in reversed(timesteps):
314
+ idx = t_to_idx[int(t)]
315
+ for b in range(0, x0.shape[0], batch_size):
316
+ x_batch = x0[b:b + batch_size]
317
+
318
+ noise = randn_tensor(shape=x_batch.shape, device=self.device, dtype=x0.dtype)
319
+ xts[idx, b:b + batch_size] = self.scheduler.add_noise(x_batch, noise, t)
320
+
321
+ xts = torch.cat([xts, x0.unsqueeze(0)], dim=0)
322
+
323
+ zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)
324
+
325
+ for t in tqdm(timesteps):
326
+ idx = t_to_idx[int(t)]
327
+ # 1. predict noise residual
328
+ for b in range(0, x0.shape[0], batch_size):
329
+ xt = xts[idx, b:b + batch_size]
330
+
331
+ cond_batch = cond.repeat(xt.shape[0], 1, 1)
332
+ noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=cond_batch).sample
333
+
334
+ xtm1 = xts[idx + 1, b:b + batch_size]
335
+ z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, eta)
336
+ zs[idx, b:b + batch_size] = z
337
+
338
+ # correction to avoid error accumulation
339
+ xts[idx + 1, b:b + batch_size] = xtm1_corrected
340
+
341
+ if save_latents:
342
+ torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
343
+
344
+ if return_inverted_latents:
345
+ self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()
346
+
347
+ if save_path:
348
+ torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
349
+ torch.save(zs, os.path.join(save_path, 'latents', f'noise_total.pt'))
350
+
351
+ if return_inverted_latents:
352
+ self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()
353
+ self.noise_total = zs.clone()
354
+
355
+ return xts[skip_steps].expand(latent_frames.shape[0], -1, -1, -1), zs
356
+
357
+ def prepare_extra_step_kwargs(self, eta):
358
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
359
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
360
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
361
+ # and should be between [0, 1]
362
+
363
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
364
+ extra_step_kwargs = {}
365
+ if accepts_eta:
366
+ extra_step_kwargs["eta"] = eta
367
+
368
+ # check if the scheduler accepts generator
369
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
370
+ return extra_step_kwargs
371
+
372
+ @torch.no_grad()
373
+ def ddpm_sample(self, init_latents, cond, batch_size, num_inversion_steps, skip_steps, eta, zs_all,
374
+ guidance_scale=0):
375
+ use_ddpm = True
376
+ do_classifier_free_guidance = guidance_scale > 1.0
377
+
378
+ total_latents = init_latents
379
+ self.scheduler.set_timesteps(num_inversion_steps, device=device)
380
+ timesteps = self.scheduler.timesteps
381
+ zs_total = zs_all[skip_steps:]
382
+
383
+ if use_ddpm:
384
+ t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs_total.shape[0]:])}
385
+ timesteps = timesteps[-zs_total.shape[0]:]
386
+
387
+ num_warmup_steps = len(timesteps) - num_inversion_steps * self.scheduler.order
388
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
389
+
390
+ for i, t in enumerate(tqdm(timesteps)):
391
+ for b in range(0, total_latents.shape[0], batch_size):
392
+ latents = total_latents[b:b + batch_size]
393
+ if do_classifier_free_guidance:
394
+ latent_model_input = torch.cat([latents] * 2)
395
+ else:
396
+ latent_model_input = latents
397
+ cond_batch = cond.repeat(latents.shape[0], 1, 1)
398
+
399
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
400
+
401
+ noise_pred = self.unet(
402
+ latent_model_input,
403
+ t,
404
+ encoder_hidden_states=cond_batch,
405
+ return_dict=False,
406
+ )[0]
407
+
408
+ if do_classifier_free_guidance:
409
+ noise_pred_out = noise_pred.chunk(2) # [b,4, 64, 64]
410
+ noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
411
+
412
+ # default text guidance
413
+ noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond)
414
+
415
+ noise_pred = noise_pred_uncond + noise_guidance
416
+
417
+ idx = t_to_idx[int(t)]
418
+ zs = zs_total[idx, b:b + batch_size]
419
+ latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs,
420
+ **extra_step_kwargs).prev_sample
421
+ total_latents[b:b + batch_size] = latents
422
+ return total_latents
423
 
424
  @torch.no_grad()
425
  def ddim_sample(self, x, cond, batch_size):
 
451
  pred_x0 = (x_batch - sigma * eps) / mu
452
  x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
453
  return x
454
+
455
+
456
 
457
  @torch.no_grad()
458
  def extract_latents(self,
 
461
  batch_size,
462
  timesteps_to_save,
463
  inversion_prompt='',
464
+ skip_steps=20,
465
+ inversion_type='ddim',
466
+ eta=1.0,
467
+ reconstruction=False):
468
+
469
  self.scheduler.set_timesteps(num_steps)
470
  cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
471
  latent_frames = self.latents
472
+
473
+ if inversion_type == 'ddim':
474
+ inverted_x= self.ddim_inversion(cond,
475
+ latent_frames,
476
+ save_path,
477
+ batch_size=batch_size,
478
+ save_latents=True if save_path else False,
479
+ timesteps_to_save=timesteps_to_save)
480
+
481
+ if reconstruction:
482
+ latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)
483
+
484
+ rgb_reconstruction = self.decode_latents(latent_reconstruction)
485
+ return (self.frames, self.latents, self.total_inverted_latents), rgb_reconstruction
486
+
487
+ else:
488
+ return (self.frames, self.latents, self.total_inverted_latents), None
489
+
490
+ elif inversion_type == 'ddpm':
491
+ inverted_x, zs = self.ddpm_inversion(cond,
492
+ latent_frames,
493
+ save_path= save_path,
494
+ batch_size=batch_size,
495
+ save_latents=True if save_path else False,
496
+ num_inversion_steps=num_steps,
497
+ eta=eta,
498
+ skip_steps=skip_steps)
499
+
500
+ cond = self.encode_text(inversion_prompt)
501
+ if reconstruction:
502
+ latent_reconstruction = self.ddpm_sample(init_latents=inverted_x,
503
+ cond=cond, batch_size=batch_size,
504
+ num_inversion_steps=num_steps, skip_steps=skip_steps,
505
+ eta=eta, zs_all=zs)
506
+ rgb_reconstruction = self.decode_latents(latent_reconstruction)
507
+ return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), rgb_reconstruction
508
+ else:
509
+ return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), None
510
 
511
+ else:
512
+ raise NotImplementedError()
513
 
514
+ def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
515
+ # 1. get previous step value (=t-1)
516
+ prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
517
+
518
+ # 2. compute alphas, betas
519
+ alpha_prod_t = scheduler.alphas_cumprod[timestep]
520
+ alpha_prod_t_prev = (
521
+ scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
522
+ )
523
+
524
+ beta_prod_t = 1 - alpha_prod_t
525
 
526
+ # 3. compute predicted original sample from predicted noise also called
527
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
528
+ pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
529
 
530
+ # 4. Clip "predicted x_0"
531
+ if scheduler.config.clip_sample:
532
+ pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
533
 
534
+ # 5. compute variance: "sigma_t(η)" -> see formula (16)
535
+ # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
536
+ variance = scheduler._get_variance(timestep, prev_timestep)
537
+ std_dev_t = eta * variance ** (0.5)
538
+
539
+ # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
540
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** (0.5) * noise_pred
541
+
542
+ # modifed so that updated xtm1 is returned as well (to avoid error accumulation)
543
+ mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
544
+ noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
545
+
546
+ return noise, mu_xt + (eta * variance ** 0.5) * noise
547
 
548
  def prep(opt):
549
  # timesteps to save
 
564
  seed_everything(opt["seed"])
565
  if not opt["frames"]: # original non demo setting
566
  save_path = os.path.join(opt["save_dir"],
567
+ f'inversion_{opt[inversion]}',
568
  f'sd_{opt["sd_version"]}',
569
  Path(opt["data_path"]).stem,
570
  f'steps_{opt["steps"]}',
571
  f'nframes_{opt["n_frames"]}')
572
  os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
573
+ if opt[inversion] == 'ddpm':
574
+ os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
575
  add_dict_to_yaml_file(os.path.join(opt["save_dir"], 'inversion_prompts.yaml'), Path(opt["data_path"]).stem, opt["inversion_prompt"])
576
  # save inversion prompt in a txt file
577
  with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
 
579
  else:
580
  save_path = None
581
 
582
+ model = Preprocess(device,
583
+ config,
584
+ vae=vae,
585
+ text_encoder=text_encoder,
586
+ scheduler=scheduler,
587
+ tokenizer=tokenizer,
588
+ unet=unet)
589
 
590
+ frames_and_latents, rgb_reconstruction = model.extract_latents(
591
  num_steps=model.config["steps"],
592
  save_path=save_path,
593
  batch_size=model.config["batch_size"],
594
  timesteps_to_save=timesteps_to_save,
595
  inversion_prompt=model.config["inversion_prompt"],
596
+ inversion_type=model.config[inversion],
597
+ skip_steps=model.config[skip_steps],
598
+ reconstruction=model.config[reconstruct]
599
  )
600
 
601
+ if model.config[inversion] == 'ddpm':
602
+ frames, latents, total_inverted_latents, zs = frames_and_latents
603
+ return frames, latents, total_inverted_latents, zs, rgb_reconstruction
604
+ else:
605
+ frames, latents, total_inverted_latents = frames_and_latents
606
+ return frames, latents, total_inverted_latents, rgb_reconstruction
607
+
608
+
609