File size: 10,210 Bytes
614d0f9 1ee4720 614d0f9 c0412f7 aa77cec 3d91a45 1455cf4 1ee4720 581179a 28962fb 1a66e6f aa77cec 1ee4720 94d8833 1bf613a 1ee4720 581179a 2897982 581179a 47d8484 581179a 2897982 581179a 1a66e6f 840cbc5 1a66e6f 581179a 1a66e6f 47d8484 1a66e6f 47d8484 2897982 1a66e6f 581179a 47d8484 1a66e6f 47d8484 1bf613a 1a66e6f 47d8484 1a66e6f 1bf613a 47d8484 581179a 47d8484 581179a 47d8484 1a66e6f 47d8484 94d8833 28962fb 47d8484 07cff5b dcfef54 e8e2063 28962fb 07cff5b 28962fb 07cff5b 1bf613a e19f5d0 581179a 1bf613a 47d8484 581179a 94d8833 581179a 94d8833 581179a 94d8833 0a0456c dcfef54 94d8833 0a0456c 1bf613a 581179a 07cff5b dcfef54 1bf613a dcfef54 1bf613a dcfef54 d3ccb32 28962fb 07cff5b 28962fb 1ee4720 3d91a45 1ee4720 3d91a45 1ee4720 3d91a45 1ee4720 3d91a45 1ee4720 581179a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
// import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
import { HfInference } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]/+esm';
const inference = new HfInference();
// let pipe = await pipeline('text-generation', 'mistralai/Mistral-7B-Instruct-v0.2');
// models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2')
// list of models by task: 'https://huggingface.co/docs/transformers.js/index#supported-tasksmodels'
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
// env.allowLocalModels = false;
///////// VARIABLES
let PROMPT, PREPROMPT, promptResult, submitButton, addButton, promptInput, inputValues, modelDisplay, modelResult
// const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B', 'Xenova/LaMini-Flan-T5-783M');
let blankArray = []
let MODELNAME = "meta-llama/Meta-Llama-3-8B-Instruct"
// models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', "meta-llama/Meta-Llama-3-70B-Instruct", 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2', "meta-llama/Meta-Llama-3-70B-Instruct")
///// p5 STUFF
new p5(function(p5){
p5.setup = function(){
console.log('p5 loaded')
p5.noCanvas()
makeInterface()
}
p5.draw = function(){
//
}
window.onload = function(){
console.log('dom and js loaded')
}
let fieldsDiv = document.querySelector("#blanks")
function makeInterface(){
console.log('reached makeInterface')
let title = p5.createElement('h1', 'p5.js Critical AI Prompt Battle')
// title.position(0,50)
p5.createElement('p',`This tool lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [XXX][TO-DO]`)
// .position(0,100)
promptInput = p5.createInput("")
// promptInput.position(0,160)
promptInput.size(600);
promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word on its own.`)
promptInput.value(`The [BLANK] works as a [FILL] but wishes for...`)
promptInput.addClass("prompt")
p5.createP(promptInput.attribute('label'))
// .position(0,100)
//make for loop to generate
//make a button to make another
//add them to the list of items
fieldsDiv = p5.createDiv()
fieldsDiv.id('fieldsDiv')
// fieldsDiv.position(0,250)
// initial code to make a single field
// blankA = p5.createInput("");
// blankA.position(0, 240);
// blankA.size(300);
// blankA.addClass("blank")
// blankA.parent('#fieldsDiv')
// function to generate a single BLANK form field instead
addField()
// // BUTTONS // //
// send prompt to model
submitButton = p5.createButton("SUBMIT")
submitButton.position(0,600)
submitButton.size(200)
submitButton.class('submit');
submitButton.mousePressed(getInputs)
// add more blanks to fill in
addButton = p5.createButton("more blanks")
addButton.size(200)
addButton.position(150,600)
addButton.mousePressed(addField)
// TO-DO a model drop down list?
// describe(``)
// TO-DO alt-text description
}
function addField(){
let f = p5.createInput("")
f.class("blank")
f.parent("#fieldsDiv")
// DOES THIS WORK???????????????????
blankArray.push(f)
console.log("made field")
// Cap the number of fields, avoids token limit in prompt
let blanks = document.querySelectorAll(".blank")
if (blanks.length > 7){
console.log(blanks.length)
addButton.style('visibility','hidden')
}
}
async function getInputs(){
// Map the list of blanks text values to a new list
let INPUTVALUES = blankArray.map(i => i.value())
console.log(INPUTVALUES)
// Do model stuff in this function instead of in general
PROMPT = promptInput.value() // updated check of the prompt field
// BLANKS = inputValues // get ready to feed array list into model
PREPROMPT = `Please return an array of sentences. In each sentence, fill in the [BLANK] in the following sentence with each word I provide in the array ${INPUTVALUES}. Replace any [FILL] with an appropriate word of your choice.`
// we pass PROMPT and PREPROMPT to the model function, don't need to pass INPUTVALUES bc it's passed into the PREPROMPT already here
modelResult = await runModel(PREPROMPT, PROMPT)
await displayModel(modelResult)
}
async function displayModel(m){
modelDisplay = p5.createElement("p", "Results:");
await modelDisplay.html(m)
}
// async function showResults(){
// modelDisplay = p5.createElement("p", "Results:");
// // modelDisplay.position(0, 380);
// setTimeout(() => {
// modelDisplay.html(modelResult)
// }, 2000);
// }
// var modelResult = submitButton.mousePressed(runModel) = function(){
// // listens for the button to be clicked
// // run the prompt through the model here
// // modelResult = runModel()
// // return modelResult
// runModel()
// }
// function makeblank(i){
// i = p5.createInput("");
// i.position(0, 300); //append to last blank and move buttons down
// i.size(200);
// }
});
///// MODEL STUFF
// var PROMPT = `The [BLANK] works as a [blank] but wishes for [blank].`
// /// this needs to run on button click, use string variables to blank in the form
// var PROMPT = promptInput.value()
// var blankArray = ["mother", "father", "sister", "brother"]
// // for num of blanks put in list
// var blankArray = [`${blankAResult}`, `${blankBResult}`, `${blankCResult}`]
//Error: Server Xenova/distilgpt2 does not seem to support chat completion. Error: HfApiJson(Deserialize(Error("unknown variant `transformers.js`, expected one of `text-generation-inference`, `transformers`, `allennlp`, `flair`, `espnet`, `asteroid`, `speechbrain`, `timm`, `sentence-transformers`, `spacy`, `sklearn`, `stanza`, `adapter-transformers`, `fasttext`, `fairseq`, `pyannote-audio`, `doctr`, `nemo`, `fastai`, `k2`, `diffusers`, `paddlenlp`, `mindspore`, `open_clip`, `span-marker`, `bertopic`, `peft`, `setfit`", line: 1, column: 397)))
async function runModel(PREPROMPT, PROMPT){
// Chat completion API
const out = await inference.chat_completion({ //inference.fill_mask({
model: MODELNAME,
// model: "google/gemma-2-9b",
// messages: [{ role: "user", content: PREPROMPT + PROMPT }],
max_tokens: 100
});
// let out = await pipe(PREPROMPT + PROMPT)
// let out = await pipe(PREPROMPT + PROMPT, {
// max_new_tokens: 250,
// temperature: 0.9,
// // return_full_text: False,
// repetition_penalty: 1.5,
// // no_repeat_ngram_size: 2,
// // num_beams: 2,
// num_return_sequences: 1
// });
console.log(out)
// var modelResult = await out.choices[0].message.content
var modelResult = await out[0].generated_text
console.log(modelResult);
return modelResult
}
// Reference the elements that we will need
// const status = document.getElementById('status');
// const fileUpload = document.getElementById('upload');
// const imageContainer = document.getElementById('container');
// const example = document.getElementById('example');
// const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
// Create a new object detection pipeline
// status.textContent = 'Loading model...';
// const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
// status.textContent = 'Ready';
// example.addEventListener('click', (e) => {
// e.preventDefault();
// detect(EXAMPLE_URL);
// });
// fileUpload.addEventListener('change', function (e) {
// const file = e.target.files[0];
// if (!file) {
// return;
// }
// const reader = new FileReader();
// // Set up a callback when the file is loaded
// reader.onload = e2 => detect(e2.target.result);
// reader.readAsDataURL(file);
// });
// // Detect objects in the image
// async function detect(img) {
// imageContainer.innerHTML = '';
// imageContainer.style.backgroundImage = `url(${img})`;
// status.textContent = 'Analysing...';
// const output = await detector(img, {
// threshold: 0.5,
// percentage: true,
// });
// status.textContent = '';
// output.forEach(renderBox);
// }
// // Render a bounding box and label on the image
// function renderBox({ box, label }) {
// const { xmax, xmin, ymax, ymin } = box;
// // Generate a random color for the box
// const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
// // Draw the box
// const boxElement = document.createElement('div');
// boxElement.className = 'bounding-box';
// Object.assign(boxElement.style, {
// borderColor: color,
// left: 100 * xmin + '%',
// top: 100 * ymin + '%',
// width: 100 * (xmax - xmin) + '%',
// height: 100 * (ymax - ymin) + '%',
// })
// // Draw label
// const labelElement = document.createElement('span');
// labelElement.textContent = label;
// labelElement.className = 'bounding-box-label';
// labelElement.style.backgroundColor = color;
// boxElement.appendChild(labelElement);
// imageContainer.appendChild(boxElement);
// } |