Sarah Ciston commited on
Commit
aa77cec
·
1 Parent(s): addde8c

switch model add hyperparams

Browse files
Files changed (2) hide show
  1. README.md +2 -1
  2. sketch.js +15 -20
README.md CHANGED
@@ -6,8 +6,9 @@ colorTo: blue
6
  sdk: static
7
  pinned: false
8
  models:
9
- - Xenova/detr-resnet-50
10
  - Xenova/gpt2
 
11
  # - mistralai/Mistral-7B-Instruct-v0.2
12
  # - meta-llama/Meta-Llama-3-8B
13
  ---
 
6
  sdk: static
7
  pinned: false
8
  models:
9
+ # - Xenova/detr-resnet-50
10
  - Xenova/gpt2
11
+ - Xenova/LaMini-Flan-T5-783M
12
  # - mistralai/Mistral-7B-Instruct-v0.2
13
  # - meta-llama/Meta-Llama-3-8B
14
  ---
sketch.js CHANGED
@@ -2,16 +2,16 @@ import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers
2
  // import { HfInference } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]/+esm';
3
  // const inference = new HfInference();
4
 
5
- // import { pipeline } from '@xenova/transformers';
6
-
7
- let pipe = await pipeline('text-generation', 'Xenova/gpt2');
8
  // models('Xenova/gpt2', 'mistralai/Mistral-7B-Instruct-v0.2', 'meta-llama/Meta-Llama-3-8B')
 
 
9
 
10
  // Since we will download the model from the Hugging Face Hub, we can skip the local model check
11
- // env.allowLocalModels = false;
12
 
13
- let promptButton, buttonButton, promptInput, maskInputA, maskInputB, maskInputC, modOutput, modelOutput
14
- // const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B');
15
 
16
  var inputArray = ["Brit", "Israeli", "German", "Palestinian"]
17
 
@@ -27,18 +27,13 @@ var PROMPT = `The [BLANK] works as a [FILL] but wishes for [FILL].`
27
  // max_tokens: 100
28
  // });
29
 
30
- let out = await pipe(PREPROMPT + PROMPT);
 
 
 
31
  console.log(out)
32
 
33
- // var result = await out.choices[0].message;
34
  var result = await out.generated_text
35
- // console.log("role: ", result.role, "content: ", result.content);
36
-
37
- //sends the text to a global var (not best way cant figure out better)
38
- // window.modelOutput = result.content;
39
- // modelOutput = result.content
40
- modelOutput = result
41
-
42
  // console.log('huggingface loaded');
43
 
44
 
@@ -145,14 +140,14 @@ new p5(function(p5){
145
  // p5.background(200)
146
  // p5.textSize(20)
147
  // p5.textAlign(p5.CENTER,p5.CENTER)
148
- // let promptButton = p5.createButton("GO").position(0, 340);
149
- // promptButton.position(0, 340);
150
- // promptButton.elt.style.fontSize = "15px";
151
 
152
  }
153
 
154
  p5.draw = function(){
155
- pass
156
  }
157
 
158
  window.onload = function(){
@@ -189,7 +184,7 @@ new p5(function(p5){
189
  modOutput = p5.createElement("p", "Results:");
190
  modOutput.position(0, 380);
191
  setTimeout(() => {
192
- modOutput.html(modelOutput)
193
  }, 2000);
194
 
195
  }
 
2
  // import { HfInference } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]/+esm';
3
  // const inference = new HfInference();
4
 
5
+ let pipe = await pipeline('text-generation', 'Xenova/LaMini-Flan-T5-783M');
 
 
6
  // models('Xenova/gpt2', 'mistralai/Mistral-7B-Instruct-v0.2', 'meta-llama/Meta-Llama-3-8B')
7
+ // list of models by task: 'https://huggingface.co/docs/transformers.js/index#supported-tasksmodels'
8
+
9
 
10
  // Since we will download the model from the Hugging Face Hub, we can skip the local model check
11
+ env.allowLocalModels = false;
12
 
13
+ let promptButton, buttonButton, promptInput, maskInputA, maskInputB, maskInputC, modOutput
14
+ // const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B', 'Xenova/LaMini-Flan-T5-783M');
15
 
16
  var inputArray = ["Brit", "Israeli", "German", "Palestinian"]
17
 
 
27
  // max_tokens: 100
28
  // });
29
 
30
+ let out = await pipe(PREPROMPT + PROMPT, {
31
+ max_new_tokens: 100,
32
+ temperature: 0.9
33
+ });
34
  console.log(out)
35
 
 
36
  var result = await out.generated_text
 
 
 
 
 
 
 
37
  // console.log('huggingface loaded');
38
 
39
 
 
140
  // p5.background(200)
141
  // p5.textSize(20)
142
  // p5.textAlign(p5.CENTER,p5.CENTER)
143
+ let promptButton = p5.createButton("GO").position(0, 340);
144
+ promptButton.position(0, 340);
145
+ promptButton.elt.style.fontSize = "15px";
146
 
147
  }
148
 
149
  p5.draw = function(){
150
+ //
151
  }
152
 
153
  window.onload = function(){
 
184
  modOutput = p5.createElement("p", "Results:");
185
  modOutput.position(0, 380);
186
  setTimeout(() => {
187
+ modOutput.html(result)
188
  }, 2000);
189
 
190
  }