Sarah Ciston commited on
Commit
28962fb
·
1 Parent(s): dcfef54

add model back into loop

Browse files
Files changed (1) hide show
  1. sketch.js +25 -26
sketch.js CHANGED
@@ -14,7 +14,7 @@ const inference = new HfInference();
14
 
15
 
16
 
17
- let PROMPT, promptResult, submitButton, addButton, promptInput, inputValues, modelDisplay, modelResult
18
 
19
  // const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B', 'Xenova/LaMini-Flan-T5-783M');
20
 
@@ -23,10 +23,6 @@ let blankArray = []
23
  let MODELNAME = 'Xenova/gpt-3.5-turbo'
24
  // models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2')
25
 
26
-
27
- var PREPROMPT = `Please return an array of sentences. In each sentence, fill in the [BLANK] in the following sentence with each word I provide in the array ${inputValues}. Replace any [FILL] with an appropriate word of your choice.`
28
-
29
-
30
  ///// p5 STUFF
31
 
32
 
@@ -125,7 +121,7 @@ new p5(function(p5){
125
  }
126
  }
127
 
128
- function getInputs(){
129
  // Map the list of blanks text values to a new list
130
  let inputValues = blankArray.map(i => i.value())
131
  console.log(inputValues)
@@ -133,8 +129,11 @@ new p5(function(p5){
133
  // Do model stuff in this function instead of in general
134
  PROMPT = promptInput.value() // updated check of the prompt field
135
 
 
 
 
 
136
  await runModel()
137
- // BLANKS = inputValues // get ready to feed array list into model
138
  }
139
 
140
  // var modelResult = submitButton.mousePressed(runModel) = function(){
@@ -166,7 +165,7 @@ new p5(function(p5){
166
  // var blankArray = [`${blankAResult}`, `${blankBResult}`, `${blankCResult}`]
167
 
168
 
169
- async function runModel(prompt, blanks){
170
  // Chat completion API
171
  const out = await inference.chatCompletion({
172
  model: MODELNAME,
@@ -175,24 +174,24 @@ async function runModel(prompt, blanks){
175
  max_tokens: 100
176
  });
177
 
178
- // // let out = await pipe(PREPROMPT + PROMPT)
179
- // // let out = await pipe(PREPROMPT + PROMPT, {
180
- // // max_new_tokens: 250,
181
- // // temperature: 0.9,
182
- // // // return_full_text: False,
183
- // // repetition_penalty: 1.5,
184
- // // // no_repeat_ngram_size: 2,
185
- // // // num_beams: 2,
186
- // // num_return_sequences: 1
187
- // // });
188
- // console.log(out)
189
-
190
- // var modelResult = await out.choices[0].message.content
191
- // // var modelResult = await out[0].generated_text
192
- // console.log(modelResult);
193
-
194
- // return modelResult
195
- // }
196
 
197
 
198
  // Reference the elements that we will need
 
14
 
15
 
16
 
17
+ let PROMPT, PREPROMPT, promptResult, submitButton, addButton, promptInput, inputValues, modelDisplay, modelResult
18
 
19
  // const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B', 'Xenova/LaMini-Flan-T5-783M');
20
 
 
23
  let MODELNAME = 'Xenova/gpt-3.5-turbo'
24
  // models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2')
25
 
 
 
 
 
26
  ///// p5 STUFF
27
 
28
 
 
121
  }
122
  }
123
 
124
+ async function getInputs(){
125
  // Map the list of blanks text values to a new list
126
  let inputValues = blankArray.map(i => i.value())
127
  console.log(inputValues)
 
129
  // Do model stuff in this function instead of in general
130
  PROMPT = promptInput.value() // updated check of the prompt field
131
 
132
+ BLANKS = inputValues // get ready to feed array list into model
133
+
134
+ PREPROMPT = `Please return an array of sentences. In each sentence, fill in the [BLANK] in the following sentence with each word I provide in the array ${inputValues}. Replace any [FILL] with an appropriate word of your choice.`
135
+
136
  await runModel()
 
137
  }
138
 
139
  // var modelResult = submitButton.mousePressed(runModel) = function(){
 
165
  // var blankArray = [`${blankAResult}`, `${blankBResult}`, `${blankCResult}`]
166
 
167
 
168
+ async function runModel(){
169
  // Chat completion API
170
  const out = await inference.chatCompletion({
171
  model: MODELNAME,
 
174
  max_tokens: 100
175
  });
176
 
177
+ // let out = await pipe(PREPROMPT + PROMPT)
178
+ // let out = await pipe(PREPROMPT + PROMPT, {
179
+ // max_new_tokens: 250,
180
+ // temperature: 0.9,
181
+ // // return_full_text: False,
182
+ // repetition_penalty: 1.5,
183
+ // // no_repeat_ngram_size: 2,
184
+ // // num_beams: 2,
185
+ // num_return_sequences: 1
186
+ // });
187
+ console.log(out)
188
+
189
+ var modelResult = await out.choices[0].message.content
190
+ // var modelResult = await out[0].generated_text
191
+ console.log(modelResult);
192
+
193
+ return modelResult
194
+ }
195
 
196
 
197
  // Reference the elements that we will need