File size: 4,500 Bytes
202510d
 
 
 
4e9eaed
8f5830b
932c3e0
ba672d1
202510d
 
 
 
932c3e0
 
 
ba672d1
 
 
0b853b9
 
ba672d1
202510d
 
932c3e0
202510d
 
932c3e0
 
 
202510d
e3552fa
932c3e0
 
 
 
 
4e9eaed
0b853b9
171c0f8
 
 
 
 
0b853b9
171c0f8
 
 
 
 
 
 
 
8f5830b
 
932c3e0
0b853b9
 
932c3e0
 
8f5830b
 
0b853b9
932c3e0
0b853b9
8f5830b
0b853b9
932c3e0
0b853b9
 
932c3e0
0b853b9
 
171c0f8
0b853b9
 
 
 
 
 
8f5830b
932c3e0
0b853b9
 
932c3e0
ba672d1
0b853b9
932c3e0
 
0b853b9
 
932c3e0
 
 
 
 
0b853b9
 
932c3e0
 
 
 
 
ba672d1
932c3e0
0b853b9
 
 
 
 
 
 
 
 
 
 
 
 
 
13279be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path
import os

feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")


def process_image(image_path):
    image_path = Path(image_path)
    image_raw = Image.open(image_path)
    image = image_raw.resize(
        (800, int(800 * image_raw.size[1] / image_raw.size[0])),
        Image.Resampling.LANCZOS,
    )

    # prepare image for the model
    encoding = feature_extractor(image, return_tensors="pt")

    # forward pass
    with torch.no_grad():
        outputs = model(**encoding)
        predicted_depth = outputs.predicted_depth

    # interpolate to original size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],
        mode="bicubic",
        align_corners=False,
    ).squeeze()
    output = prediction.cpu().numpy()
    depth_image = (output * 255 / np.max(output)).astype("uint8")
    try:
        gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except Exception as e:
        gltf_path = create_3d_obj(np.array(image), depth_image, image_path, depth=8)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except:
        print("Error reconstructing 3D model")
        raise Exception("Error reconstructing 3D model")


def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
    depth_o3d = o3d.geometry.Image(depth_image)
    image_o3d = o3d.geometry.Image(rgb_image)
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        image_o3d, depth_o3d, convert_rgb_to_intensity=False
    )
    w = int(depth_image.shape[1])
    h = int(depth_image.shape[0])

    camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
    camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)

    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)

    print("normals")
    pcd.normals = o3d.utility.Vector3dVector(
        np.zeros((1, 3))
    )  # invalidate existing normals
    pcd.estimate_normals(
        search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
    )
    pcd.orient_normals_towards_camera_location(
        camera_location=np.array([0.0, 0.0, 1000.0])
    )
    pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
    pcd.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])

    print("run Poisson surface reconstruction")
    with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
        mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcd, depth=depth, width=0, scale=1.1, linear_fit=True
        )

    voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
    print(f"voxel_size = {voxel_size:e}")
    mesh = mesh_raw.simplify_vertex_clustering(
        voxel_size=voxel_size,
        contraction=o3d.geometry.SimplificationContraction.Average,
    )

    # vertices_to_remove = densities < np.quantile(densities, 0.001)
    # mesh.remove_vertices_by_mask(vertices_to_remove)
    bbox = pcd.get_axis_aligned_bounding_box()
    mesh_crop = mesh.crop(bbox)
    gltf_path = f"./{image_path.stem}.gltf"
    o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
    return gltf_path


title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
examples = [["examples/" + img] for img in os.listdir("examples/")]

iface = gr.Interface(
    fn=process_image,
    inputs=[gr.Image(type="filepath", label="Input Image")],
    outputs=[
        gr.Image(label="predicted depth", type="pil"),
        gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]),
        gr.File(label="3d gLTF"),
    ],
    title=title,
    description=description,
    examples=examples,
    allow_flagging="never",
    cache_examples=False,
)
iface.launch(debug=True, show_api=False)