fix FOV
Browse files- .gitignore +46 -0
- app.py +71 -43
.gitignore
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python build
|
2 |
+
.eggs/
|
3 |
+
gradio.egg-info/*
|
4 |
+
!gradio.egg-info/requires.txt
|
5 |
+
!gradio.egg-info/PKG-INFO
|
6 |
+
dist/
|
7 |
+
*.pyc
|
8 |
+
__pycache__/
|
9 |
+
*.py[cod]
|
10 |
+
*$py.class
|
11 |
+
build/
|
12 |
+
|
13 |
+
# JS build
|
14 |
+
gradio/templates/frontend
|
15 |
+
# Secrets
|
16 |
+
.env
|
17 |
+
|
18 |
+
# Gradio run artifacts
|
19 |
+
*.db
|
20 |
+
*.sqlite3
|
21 |
+
gradio/launches.json
|
22 |
+
flagged/
|
23 |
+
gradio_cached_examples/
|
24 |
+
|
25 |
+
# Tests
|
26 |
+
.coverage
|
27 |
+
coverage.xml
|
28 |
+
test.txt
|
29 |
+
|
30 |
+
# Demos
|
31 |
+
demo/tmp.zip
|
32 |
+
demo/files/*.avi
|
33 |
+
demo/files/*.mp4
|
34 |
+
|
35 |
+
# Etc
|
36 |
+
.idea/*
|
37 |
+
.DS_Store
|
38 |
+
*.bak
|
39 |
+
workspace.code-workspace
|
40 |
+
*.h5
|
41 |
+
.vscode/
|
42 |
+
|
43 |
+
# log files
|
44 |
+
.pnpm-debug.log
|
45 |
+
venv/
|
46 |
+
*.db-journal
|
app.py
CHANGED
@@ -4,72 +4,100 @@ import torch
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import open3d as o3d
|
7 |
-
|
8 |
-
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
9 |
|
10 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
11 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
# prepare image for the model
|
15 |
encoding = feature_extractor(image, return_tensors="pt")
|
16 |
-
|
17 |
# forward pass
|
18 |
with torch.no_grad():
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
# interpolate to original size
|
23 |
prediction = torch.nn.functional.interpolate(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
output = prediction.cpu().numpy()
|
30 |
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
31 |
-
|
32 |
-
|
33 |
-
# img = Image.fromarray(formatted)
|
34 |
-
return "output.gltf"
|
35 |
-
|
36 |
-
# return result
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
41 |
depth_o3d = o3d.geometry.Image(depth_image)
|
42 |
image_o3d = o3d.geometry.Image(rgb_image)
|
43 |
-
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
-
FOV = np.pi/4
|
48 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
49 |
-
camera_intrinsic.set_intrinsics(w, h,
|
|
|
|
|
|
|
50 |
|
51 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image,camera_intrinsic)
|
52 |
print('normals')
|
53 |
-
pcd.normals = o3d.utility.Vector3dVector(
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
print('run Poisson surface reconstruction')
|
57 |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
print(mesh)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
title=title,
|
71 |
description=description,
|
72 |
examples=examples,
|
73 |
-
allow_flagging="never"
|
74 |
-
|
75 |
-
iface.launch(debug=True)
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import open3d as o3d
|
7 |
+
from pathlib import Path
|
|
|
8 |
|
9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
11 |
|
12 |
+
|
13 |
+
def process_image(image_path):
|
14 |
+
image_path = Path(image_path)
|
15 |
+
print(image_path)
|
16 |
+
image = Image.open(image_path)
|
17 |
# prepare image for the model
|
18 |
encoding = feature_extractor(image, return_tensors="pt")
|
19 |
+
|
20 |
# forward pass
|
21 |
with torch.no_grad():
|
22 |
+
outputs = model(**encoding)
|
23 |
+
predicted_depth = outputs.predicted_depth
|
24 |
+
|
25 |
# interpolate to original size
|
26 |
prediction = torch.nn.functional.interpolate(
|
27 |
+
predicted_depth.unsqueeze(1),
|
28 |
+
size=image.size[::-1],
|
29 |
+
mode="bicubic",
|
30 |
+
align_corners=False,
|
31 |
+
).squeeze()
|
32 |
output = prediction.cpu().numpy()
|
33 |
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
34 |
+
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
|
35 |
+
img = Image.fromarray(depth_image)
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
return [img, gltf_path, gltf_path]
|
38 |
|
39 |
+
|
40 |
+
def create_3d_obj(rgb_image, depth_image, image_path):
|
41 |
depth_o3d = o3d.geometry.Image(depth_image)
|
42 |
image_o3d = o3d.geometry.Image(rgb_image)
|
43 |
+
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
44 |
+
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
45 |
+
w = int(depth_image.shape[1])
|
46 |
+
h = int(depth_image.shape[0])
|
47 |
|
|
|
48 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
49 |
+
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
|
50 |
+
|
51 |
+
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
|
52 |
+
rgbd_image, camera_intrinsic)
|
53 |
|
|
|
54 |
print('normals')
|
55 |
+
pcd.normals = o3d.utility.Vector3dVector(
|
56 |
+
np.zeros((1, 3))) # invalidate existing normals
|
57 |
+
pcd.estimate_normals(
|
58 |
+
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
|
59 |
+
pcd.transform([[1, 0, 0, 0],
|
60 |
+
[0, -1, 0, 0],
|
61 |
+
[0, 0, 1, 0],
|
62 |
+
[0, 0, 0, 1]])
|
63 |
+
|
64 |
+
|
65 |
print('run Poisson surface reconstruction')
|
66 |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
67 |
+
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
68 |
+
pcd, depth=10, width=0, scale=1.1, linear_fit=True)
|
69 |
+
|
70 |
+
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 128
|
71 |
+
print(f'voxel_size = {voxel_size:e}')
|
72 |
+
mesh = mesh_raw.simplify_vertex_clustering(
|
73 |
+
voxel_size=voxel_size,
|
74 |
+
contraction=o3d.geometry.SimplificationContraction.Average)
|
75 |
+
|
76 |
+
# vertices_to_remove = densities < np.quantile(densities, 0.001)
|
77 |
+
# mesh.remove_vertices_by_mask(vertices_to_remove)
|
78 |
+
bbox = pcd.get_axis_aligned_bounding_box()
|
79 |
+
mesh_crop = mesh.crop(bbox)
|
80 |
print(mesh)
|
81 |
+
gltf_path = f'./{image_path.stem}.gltf'
|
82 |
+
o3d.io.write_triangle_mesh(
|
83 |
+
gltf_path, mesh_crop, write_triangle_uvs=True)
|
84 |
+
return gltf_path
|
85 |
+
|
86 |
+
|
87 |
+
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
|
88 |
+
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
|
89 |
+
examples = [['./examples/jonathan-borba-CgWTqYxHEkg-unsplash.jpeg'],
|
90 |
+
['./examples/amber-kipp-75715CVEJhI-unsplash.jpeg']]
|
91 |
+
|
92 |
+
iface = gr.Interface(fn=process_image,
|
93 |
+
inputs=[gr.inputs.Image(
|
94 |
+
type="filepath", label="Input Image")],
|
95 |
+
outputs=[gr.outputs.Image(label="predicted depth", type="pil"),
|
96 |
+
gr.outputs.Image3D(label="3d mesh reconstruction", clear_color=[
|
97 |
+
1.0, 1.0, 1.0, 1.0]),
|
98 |
+
gr.outputs.File(label="3d gLTF")],
|
99 |
title=title,
|
100 |
description=description,
|
101 |
examples=examples,
|
102 |
+
allow_flagging="never")
|
103 |
+
iface.launch(debug=True, enable_queue=True, cache_examples=True)
|
|