Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,8 @@ def process_image(image_path):
|
|
16 |
image_raw = Image.open(image_path)
|
17 |
image = image_raw.resize(
|
18 |
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
19 |
-
Image.Resampling.LANCZOS
|
|
|
20 |
|
21 |
# prepare image for the model
|
22 |
encoding = feature_extractor(image, return_tensors="pt")
|
@@ -34,14 +35,13 @@ def process_image(image_path):
|
|
34 |
align_corners=False,
|
35 |
).squeeze()
|
36 |
output = prediction.cpu().numpy()
|
37 |
-
depth_image = (output * 255 / np.max(output)).astype(
|
38 |
try:
|
39 |
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
|
40 |
img = Image.fromarray(depth_image)
|
41 |
return [img, gltf_path, gltf_path]
|
42 |
except Exception as e:
|
43 |
-
gltf_path = create_3d_obj(
|
44 |
-
np.array(image), depth_image, image_path, depth=8)
|
45 |
img = Image.fromarray(depth_image)
|
46 |
return [img, gltf_path, gltf_path]
|
47 |
except:
|
@@ -53,50 +53,48 @@ def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
|
|
53 |
depth_o3d = o3d.geometry.Image(depth_image)
|
54 |
image_o3d = o3d.geometry.Image(rgb_image)
|
55 |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
56 |
-
image_o3d, depth_o3d, convert_rgb_to_intensity=False
|
|
|
57 |
w = int(depth_image.shape[1])
|
58 |
h = int(depth_image.shape[0])
|
59 |
|
60 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
61 |
-
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
|
62 |
|
63 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
|
64 |
-
rgbd_image, camera_intrinsic)
|
65 |
|
66 |
-
print(
|
67 |
pcd.normals = o3d.utility.Vector3dVector(
|
68 |
-
np.zeros((1, 3))
|
|
|
69 |
pcd.estimate_normals(
|
70 |
-
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
|
|
|
71 |
pcd.orient_normals_towards_camera_location(
|
72 |
-
camera_location=np.array([0
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
[0, 1, 0, 0],
|
79 |
-
[0, 0, 1, 0],
|
80 |
-
[0, 0, 0, 1]])
|
81 |
-
|
82 |
-
print('run Poisson surface reconstruction')
|
83 |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
84 |
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
85 |
-
pcd, depth=depth, width=0, scale=1.1, linear_fit=True
|
|
|
86 |
|
87 |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
|
88 |
-
print(f
|
89 |
mesh = mesh_raw.simplify_vertex_clustering(
|
90 |
voxel_size=voxel_size,
|
91 |
-
contraction=o3d.geometry.SimplificationContraction.Average
|
|
|
92 |
|
93 |
# vertices_to_remove = densities < np.quantile(densities, 0.001)
|
94 |
# mesh.remove_vertices_by_mask(vertices_to_remove)
|
95 |
bbox = pcd.get_axis_aligned_bounding_box()
|
96 |
mesh_crop = mesh.crop(bbox)
|
97 |
-
gltf_path = f
|
98 |
-
o3d.io.write_triangle_mesh(
|
99 |
-
gltf_path, mesh_crop, write_triangle_uvs=True)
|
100 |
return gltf_path
|
101 |
|
102 |
|
@@ -104,16 +102,19 @@ title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
|
|
104 |
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
|
105 |
examples = [["examples/" + img] for img in os.listdir("examples/")]
|
106 |
|
107 |
-
iface = gr.Interface(
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
16 |
image_raw = Image.open(image_path)
|
17 |
image = image_raw.resize(
|
18 |
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
19 |
+
Image.Resampling.LANCZOS,
|
20 |
+
)
|
21 |
|
22 |
# prepare image for the model
|
23 |
encoding = feature_extractor(image, return_tensors="pt")
|
|
|
35 |
align_corners=False,
|
36 |
).squeeze()
|
37 |
output = prediction.cpu().numpy()
|
38 |
+
depth_image = (output * 255 / np.max(output)).astype("uint8")
|
39 |
try:
|
40 |
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
|
41 |
img = Image.fromarray(depth_image)
|
42 |
return [img, gltf_path, gltf_path]
|
43 |
except Exception as e:
|
44 |
+
gltf_path = create_3d_obj(np.array(image), depth_image, image_path, depth=8)
|
|
|
45 |
img = Image.fromarray(depth_image)
|
46 |
return [img, gltf_path, gltf_path]
|
47 |
except:
|
|
|
53 |
depth_o3d = o3d.geometry.Image(depth_image)
|
54 |
image_o3d = o3d.geometry.Image(rgb_image)
|
55 |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
56 |
+
image_o3d, depth_o3d, convert_rgb_to_intensity=False
|
57 |
+
)
|
58 |
w = int(depth_image.shape[1])
|
59 |
h = int(depth_image.shape[0])
|
60 |
|
61 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
62 |
+
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
|
63 |
|
64 |
+
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
|
|
|
65 |
|
66 |
+
print("normals")
|
67 |
pcd.normals = o3d.utility.Vector3dVector(
|
68 |
+
np.zeros((1, 3))
|
69 |
+
) # invalidate existing normals
|
70 |
pcd.estimate_normals(
|
71 |
+
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
|
72 |
+
)
|
73 |
pcd.orient_normals_towards_camera_location(
|
74 |
+
camera_location=np.array([0.0, 0.0, 1000.0])
|
75 |
+
)
|
76 |
+
pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
77 |
+
pcd.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
|
78 |
+
|
79 |
+
print("run Poisson surface reconstruction")
|
|
|
|
|
|
|
|
|
|
|
80 |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
81 |
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
82 |
+
pcd, depth=depth, width=0, scale=1.1, linear_fit=True
|
83 |
+
)
|
84 |
|
85 |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
|
86 |
+
print(f"voxel_size = {voxel_size:e}")
|
87 |
mesh = mesh_raw.simplify_vertex_clustering(
|
88 |
voxel_size=voxel_size,
|
89 |
+
contraction=o3d.geometry.SimplificationContraction.Average,
|
90 |
+
)
|
91 |
|
92 |
# vertices_to_remove = densities < np.quantile(densities, 0.001)
|
93 |
# mesh.remove_vertices_by_mask(vertices_to_remove)
|
94 |
bbox = pcd.get_axis_aligned_bounding_box()
|
95 |
mesh_crop = mesh.crop(bbox)
|
96 |
+
gltf_path = f"./{image_path.stem}.gltf"
|
97 |
+
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
|
|
|
98 |
return gltf_path
|
99 |
|
100 |
|
|
|
102 |
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
|
103 |
examples = [["examples/" + img] for img in os.listdir("examples/")]
|
104 |
|
105 |
+
iface = gr.Interface(
|
106 |
+
fn=process_image,
|
107 |
+
inputs=[gr.Image(type="filepath", label="Input Image")],
|
108 |
+
outputs=[
|
109 |
+
gr.Image(label="predicted depth", type="pil"),
|
110 |
+
gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]),
|
111 |
+
gr.File(label="3d gLTF"),
|
112 |
+
],
|
113 |
+
title=title,
|
114 |
+
description=description,
|
115 |
+
examples=examples,
|
116 |
+
allow_flagging="never",
|
117 |
+
cache_examples=False,
|
118 |
+
api_open=false
|
119 |
+
)
|
120 |
+
iface.launch(debug=True, show_api=False)
|