radames commited on
Commit
0b853b9
·
verified ·
1 Parent(s): 7adc433

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -41
app.py CHANGED
@@ -16,7 +16,8 @@ def process_image(image_path):
16
  image_raw = Image.open(image_path)
17
  image = image_raw.resize(
18
  (800, int(800 * image_raw.size[1] / image_raw.size[0])),
19
- Image.Resampling.LANCZOS)
 
20
 
21
  # prepare image for the model
22
  encoding = feature_extractor(image, return_tensors="pt")
@@ -34,14 +35,13 @@ def process_image(image_path):
34
  align_corners=False,
35
  ).squeeze()
36
  output = prediction.cpu().numpy()
37
- depth_image = (output * 255 / np.max(output)).astype('uint8')
38
  try:
39
  gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
40
  img = Image.fromarray(depth_image)
41
  return [img, gltf_path, gltf_path]
42
  except Exception as e:
43
- gltf_path = create_3d_obj(
44
- np.array(image), depth_image, image_path, depth=8)
45
  img = Image.fromarray(depth_image)
46
  return [img, gltf_path, gltf_path]
47
  except:
@@ -53,50 +53,48 @@ def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
53
  depth_o3d = o3d.geometry.Image(depth_image)
54
  image_o3d = o3d.geometry.Image(rgb_image)
55
  rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
56
- image_o3d, depth_o3d, convert_rgb_to_intensity=False)
 
57
  w = int(depth_image.shape[1])
58
  h = int(depth_image.shape[0])
59
 
60
  camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
61
- camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
62
 
63
- pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
64
- rgbd_image, camera_intrinsic)
65
 
66
- print('normals')
67
  pcd.normals = o3d.utility.Vector3dVector(
68
- np.zeros((1, 3))) # invalidate existing normals
 
69
  pcd.estimate_normals(
70
- search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
 
71
  pcd.orient_normals_towards_camera_location(
72
- camera_location=np.array([0., 0., 1000.]))
73
- pcd.transform([[1, 0, 0, 0],
74
- [0, -1, 0, 0],
75
- [0, 0, -1, 0],
76
- [0, 0, 0, 1]])
77
- pcd.transform([[-1, 0, 0, 0],
78
- [0, 1, 0, 0],
79
- [0, 0, 1, 0],
80
- [0, 0, 0, 1]])
81
-
82
- print('run Poisson surface reconstruction')
83
  with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
84
  mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
85
- pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
 
86
 
87
  voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
88
- print(f'voxel_size = {voxel_size:e}')
89
  mesh = mesh_raw.simplify_vertex_clustering(
90
  voxel_size=voxel_size,
91
- contraction=o3d.geometry.SimplificationContraction.Average)
 
92
 
93
  # vertices_to_remove = densities < np.quantile(densities, 0.001)
94
  # mesh.remove_vertices_by_mask(vertices_to_remove)
95
  bbox = pcd.get_axis_aligned_bounding_box()
96
  mesh_crop = mesh.crop(bbox)
97
- gltf_path = f'./{image_path.stem}.gltf'
98
- o3d.io.write_triangle_mesh(
99
- gltf_path, mesh_crop, write_triangle_uvs=True)
100
  return gltf_path
101
 
102
 
@@ -104,16 +102,19 @@ title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
104
  description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
105
  examples = [["examples/" + img] for img in os.listdir("examples/")]
106
 
107
- iface = gr.Interface(fn=process_image,
108
- inputs=[gr.Image(
109
- type="filepath", label="Input Image")],
110
- outputs=[gr.Image(label="predicted depth", type="pil"),
111
- gr.Model3D(label="3d mesh reconstruction", clear_color=[
112
- 1.0, 1.0, 1.0, 1.0]),
113
- gr.File(label="3d gLTF")],
114
- title=title,
115
- description=description,
116
- examples=examples,
117
- allow_flagging="never",
118
- cache_examples=False)
119
- iface.launch(debug=True, enable_queue=False)
 
 
 
 
16
  image_raw = Image.open(image_path)
17
  image = image_raw.resize(
18
  (800, int(800 * image_raw.size[1] / image_raw.size[0])),
19
+ Image.Resampling.LANCZOS,
20
+ )
21
 
22
  # prepare image for the model
23
  encoding = feature_extractor(image, return_tensors="pt")
 
35
  align_corners=False,
36
  ).squeeze()
37
  output = prediction.cpu().numpy()
38
+ depth_image = (output * 255 / np.max(output)).astype("uint8")
39
  try:
40
  gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
41
  img = Image.fromarray(depth_image)
42
  return [img, gltf_path, gltf_path]
43
  except Exception as e:
44
+ gltf_path = create_3d_obj(np.array(image), depth_image, image_path, depth=8)
 
45
  img = Image.fromarray(depth_image)
46
  return [img, gltf_path, gltf_path]
47
  except:
 
53
  depth_o3d = o3d.geometry.Image(depth_image)
54
  image_o3d = o3d.geometry.Image(rgb_image)
55
  rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
56
+ image_o3d, depth_o3d, convert_rgb_to_intensity=False
57
+ )
58
  w = int(depth_image.shape[1])
59
  h = int(depth_image.shape[0])
60
 
61
  camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
62
+ camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
63
 
64
+ pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
 
65
 
66
+ print("normals")
67
  pcd.normals = o3d.utility.Vector3dVector(
68
+ np.zeros((1, 3))
69
+ ) # invalidate existing normals
70
  pcd.estimate_normals(
71
+ search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
72
+ )
73
  pcd.orient_normals_towards_camera_location(
74
+ camera_location=np.array([0.0, 0.0, 1000.0])
75
+ )
76
+ pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
77
+ pcd.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
78
+
79
+ print("run Poisson surface reconstruction")
 
 
 
 
 
80
  with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
81
  mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
82
+ pcd, depth=depth, width=0, scale=1.1, linear_fit=True
83
+ )
84
 
85
  voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
86
+ print(f"voxel_size = {voxel_size:e}")
87
  mesh = mesh_raw.simplify_vertex_clustering(
88
  voxel_size=voxel_size,
89
+ contraction=o3d.geometry.SimplificationContraction.Average,
90
+ )
91
 
92
  # vertices_to_remove = densities < np.quantile(densities, 0.001)
93
  # mesh.remove_vertices_by_mask(vertices_to_remove)
94
  bbox = pcd.get_axis_aligned_bounding_box()
95
  mesh_crop = mesh.crop(bbox)
96
+ gltf_path = f"./{image_path.stem}.gltf"
97
+ o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
 
98
  return gltf_path
99
 
100
 
 
102
  description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
103
  examples = [["examples/" + img] for img in os.listdir("examples/")]
104
 
105
+ iface = gr.Interface(
106
+ fn=process_image,
107
+ inputs=[gr.Image(type="filepath", label="Input Image")],
108
+ outputs=[
109
+ gr.Image(label="predicted depth", type="pil"),
110
+ gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]),
111
+ gr.File(label="3d gLTF"),
112
+ ],
113
+ title=title,
114
+ description=description,
115
+ examples=examples,
116
+ allow_flagging="never",
117
+ cache_examples=False,
118
+ api_open=false
119
+ )
120
+ iface.launch(debug=True, show_api=False)