Spaces:
Paused
Paused
# -*- coding: utf-8 -*- | |
"""wiki_chat.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1P5rJeCXRSsDJw_1ksnHmodH6ng2Ot5NW | |
""" | |
# !pip install gradio | |
# !pip install -U sentence-transformers | |
# !pip install datasets | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
from torch import tensor as torch_tensor | |
from datasets import load_dataset | |
"""# import models""" | |
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1') | |
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens | |
#The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality | |
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
"""# import datasets""" | |
dataset = load_dataset("gfhayworth/wiki_mini", split='train') | |
mypassages = list(dataset.to_pandas()['psg']) | |
dataset_embed = load_dataset("gfhayworth/wiki_mini_embed", split='train') | |
dataset_embed_pd = dataset_embed.to_pandas() | |
mycorpus_embeddings = torch_tensor(dataset_embed_pd.values) | |
def search(query, top_k=20, top_n = 1): | |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
question_embedding = question_embedding #.cuda() | |
hits = util.semantic_search(question_embedding, mycorpus_embeddings, top_k=top_k) | |
hits = hits[0] # Get the hits for the first query | |
##### Re-Ranking ##### | |
cross_inp = [[query, mypassages[hit['corpus_id']]] for hit in hits] | |
cross_scores = cross_encoder.predict(cross_inp) | |
# Sort results by the cross-encoder scores | |
for idx in range(len(cross_scores)): | |
hits[idx]['cross-score'] = cross_scores[idx] | |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) | |
predictions = hits[:top_n] | |
return predictions | |
# for hit in hits[0:3]: | |
# print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " "))) | |
def get_text(qry): | |
predictions = search(qry) | |
prediction_text = [] | |
for hit in predictions: | |
prediction_text.append("{}".format(mypassages[hit['corpus_id']])) | |
return prediction_text | |
# def prt_rslt(qry): | |
# rslt = get_text(qry) | |
# for r in rslt: | |
# print(r) | |
# prt_rslt("who is the best rapper in the world?") | |
"""# chat example""" | |
def chat(message, history): | |
history = history or [] | |
message = message.lower() | |
responses = get_text(message) | |
for response in responses: | |
history.append((message, response)) | |
return history, history | |
css=".gradio-container {background-color: lightgray}" | |
with gr.Blocks(css=css) as demo: | |
history_state = gr.State() | |
gr.Markdown('# WikiBot') | |
title='Wikipedia Chatbot' | |
description='chatbot with search on Wikipedia' | |
with gr.Row(): | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
message = gr.Textbox(label='Input your question here:', | |
placeholder='How many countries are in Europe?', | |
lines=1) | |
submit = gr.Button(value='Send', | |
variant='secondary').style(full_width=False) | |
submit.click(chat, | |
inputs=[message, history_state], | |
outputs=[chatbot, history_state]) | |
gr.Examples( | |
examples=["How many countries are in Europe?", | |
"Was Roman Emperor Constantine I a Christian?", | |
"Who is the best rapper in the world?"], | |
inputs=message | |
) | |
demo.launch() | |