gfhayworth commited on
Commit
ac499d3
Β·
1 Parent(s): 7ebb0c5

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +5 -5
  2. app.py +109 -0
  3. requirements.txt +2 -0
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: Hack Qa
3
- emoji: 🐒
4
- colorFrom: yellow
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.17.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
1
  ---
2
+ title: Wiki Chat
3
+ emoji: πŸ‘€
4
+ colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 3.16.2
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """wiki_chat.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1P5rJeCXRSsDJw_1ksnHmodH6ng2Ot5NW
8
+ """
9
+
10
+ # !pip install gradio
11
+
12
+ # !pip install -U sentence-transformers
13
+
14
+ # !pip install datasets
15
+
16
+
17
+ import gradio as gr
18
+ from sentence_transformers import SentenceTransformer, CrossEncoder, util
19
+ from torch import tensor as torch_tensor
20
+ from datasets import load_dataset
21
+
22
+ """# import models"""
23
+
24
+ bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
25
+ bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
26
+
27
+ #The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
28
+ cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
29
+
30
+ """# import datasets"""
31
+ dataset = load_dataset("gfhayworth/wiki_mini", split='train')
32
+ mypassages = list(dataset.to_pandas()['psg'])
33
+
34
+ dataset_embed = load_dataset("gfhayworth/wiki_mini_embed", split='train')
35
+ dataset_embed_pd = dataset_embed.to_pandas()
36
+ mycorpus_embeddings = torch_tensor(dataset_embed_pd.values)
37
+
38
+ def search(query, top_k=20, top_n = 1):
39
+ question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
40
+ question_embedding = question_embedding #.cuda()
41
+ hits = util.semantic_search(question_embedding, mycorpus_embeddings, top_k=top_k)
42
+ hits = hits[0] # Get the hits for the first query
43
+
44
+ ##### Re-Ranking #####
45
+ cross_inp = [[query, mypassages[hit['corpus_id']]] for hit in hits]
46
+ cross_scores = cross_encoder.predict(cross_inp)
47
+
48
+ # Sort results by the cross-encoder scores
49
+ for idx in range(len(cross_scores)):
50
+ hits[idx]['cross-score'] = cross_scores[idx]
51
+
52
+ hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
53
+ predictions = hits[:top_n]
54
+ return predictions
55
+ # for hit in hits[0:3]:
56
+ # print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " ")))
57
+
58
+ def get_text(qry):
59
+ predictions = search(qry)
60
+ prediction_text = []
61
+ for hit in predictions:
62
+ prediction_text.append("{}".format(mypassages[hit['corpus_id']]))
63
+ return prediction_text
64
+
65
+ # def prt_rslt(qry):
66
+ # rslt = get_text(qry)
67
+ # for r in rslt:
68
+ # print(r)
69
+
70
+ # prt_rslt("who is the best rapper in the world?")
71
+
72
+ """# chat example"""
73
+
74
+ def chat(message, history):
75
+ history = history or []
76
+ message = message.lower()
77
+
78
+ responses = get_text(message)
79
+ for response in responses:
80
+ history.append((message, response))
81
+ return history, history
82
+
83
+ css=".gradio-container {background-color: lightgray}"
84
+
85
+ with gr.Blocks(css=css) as demo:
86
+ history_state = gr.State()
87
+ gr.Markdown('# WikiBot')
88
+ title='Wikipedia Chatbot'
89
+ description='chatbot with search on Wikipedia'
90
+ with gr.Row():
91
+ chatbot = gr.Chatbot()
92
+ with gr.Row():
93
+ message = gr.Textbox(label='Input your question here:',
94
+ placeholder='How many countries are in Europe?',
95
+ lines=1)
96
+ submit = gr.Button(value='Send',
97
+ variant='secondary').style(full_width=False)
98
+ submit.click(chat,
99
+ inputs=[message, history_state],
100
+ outputs=[chatbot, history_state])
101
+ gr.Examples(
102
+ examples=["How many countries are in Europe?",
103
+ "Was Roman Emperor Constantine I a Christian?",
104
+ "Who is the best rapper in the world?"],
105
+ inputs=message
106
+ )
107
+
108
+ demo.launch()
109
+
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ sentence-transformers
2
+ datasets