Spaces:
Paused
Paused
File size: 3,447 Bytes
ac499d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# -*- coding: utf-8 -*-
"""wiki_chat.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1P5rJeCXRSsDJw_1ksnHmodH6ng2Ot5NW
"""
# !pip install gradio
# !pip install -U sentence-transformers
# !pip install datasets
import gradio as gr
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from torch import tensor as torch_tensor
from datasets import load_dataset
"""# import models"""
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
#The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
"""# import datasets"""
dataset = load_dataset("gfhayworth/wiki_mini", split='train')
mypassages = list(dataset.to_pandas()['psg'])
dataset_embed = load_dataset("gfhayworth/wiki_mini_embed", split='train')
dataset_embed_pd = dataset_embed.to_pandas()
mycorpus_embeddings = torch_tensor(dataset_embed_pd.values)
def search(query, top_k=20, top_n = 1):
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
question_embedding = question_embedding #.cuda()
hits = util.semantic_search(question_embedding, mycorpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
cross_inp = [[query, mypassages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
predictions = hits[:top_n]
return predictions
# for hit in hits[0:3]:
# print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " ")))
def get_text(qry):
predictions = search(qry)
prediction_text = []
for hit in predictions:
prediction_text.append("{}".format(mypassages[hit['corpus_id']]))
return prediction_text
# def prt_rslt(qry):
# rslt = get_text(qry)
# for r in rslt:
# print(r)
# prt_rslt("who is the best rapper in the world?")
"""# chat example"""
def chat(message, history):
history = history or []
message = message.lower()
responses = get_text(message)
for response in responses:
history.append((message, response))
return history, history
css=".gradio-container {background-color: lightgray}"
with gr.Blocks(css=css) as demo:
history_state = gr.State()
gr.Markdown('# WikiBot')
title='Wikipedia Chatbot'
description='chatbot with search on Wikipedia'
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(label='Input your question here:',
placeholder='How many countries are in Europe?',
lines=1)
submit = gr.Button(value='Send',
variant='secondary').style(full_width=False)
submit.click(chat,
inputs=[message, history_state],
outputs=[chatbot, history_state])
gr.Examples(
examples=["How many countries are in Europe?",
"Was Roman Emperor Constantine I a Christian?",
"Who is the best rapper in the world?"],
inputs=message
)
demo.launch()
|